

Local Proceedings of the 7th International
Conference on Informatics in Schools:

Situation, Evolution and Perspectives

ISSEP 2014

Selected Papers

22-25 September 2014, Istanbul, Turkey

Yasemin Gülbahar
Erinç Karataş

Müge Adnan (Eds.)

Ankara University 2014
http://en.ankara.edu.tr/

Print: Ankara University Press
http://basimevi.ankara.edu.tr/

EDITORS
Yasemin GÜLBAHAR, Ankara University

Erinç KARATAŞ, Ankara University
Müge ADNAN, Muğla University

COVER DESIGN
Çağrı BÜYÜKÇAYLI

ISBN 978-605-136-171-0
e-ISBN 978-605-136-172-7

Typesetting: Camera-ready by author, data conversion by Ankara University Press,
Ankara, Turkey

This work is subject to copyright.

Available online at http://www.issep2014.org/lp-book/

Baskı
ANKARA ÜNİVERSİTESİ BASIMEVİ

İncitaşı Sokak, No: 10
06510 Beşevler, Ankara / TÜRKİYE

Tel: +90312 213 66 05
Basım Tarihi:

This conference is supported by TUBITAK (The Scientific & Technological
Research Council of Turkey) 2223-B Support Program for Scientific Activities

with applied number of 1929B021401286
(http://www.tubitak.gov.tr/sites/default/files/2223b-2014-3.pdf)

http://www.tubitak.gov.tr/en

”This proceeding is dedicated to Roland Mittermeir, our dear colleague
and mentor who passed away too early”

Preface

The International Conference on Informatics in Schools: Situation,
Evolution and Perspective (ISSEP), co-hosted by Ankara University
and Istanbul University in Istanbul, Turkey, is the seventh in the
series of ISSEP conferences. Although the terms ’Information and
Communication Technologies’ (ICTs) and ’Informatics’ are used in-
terchangeably by different countries, ICT is the more acknowledged
term used in Turkey, and the main focus of this conference is in-
formatics and computer science education. Hence, the aim of this
conference is to set up collaboration between researchers and prac-
titioners in the areas of informatics education and computer science
education in schools, with a different focus each year.

We live in a culturally rich world, which brings different ap-
proaches for teaching similar concepts. The focus of this conference,
either labelled as computer science or informatics, is to provide dif-
ferent insights about teaching and learning perspectives of the phe-
nomenon. Thus, this local proceedings will be including papers about
Computer Science Education, Competence Measurement for Infor-
matics, Emerging Technologies and Tools for Informatics, Teacher
Education in Informatics and Curriculum Issues.

The book consists of 10 contributed papers, selected from 33
submissions, seven short papers as poster presentations, and four
workshop descriptions. Altogether, ISSEP 2014 encompassed pre-
sentations covering research and theoretical papers, best practice
and country reports, and work in progress and discussion papers, to-
gether with short papers and workshops from 12 different countries.

Proceedings under the ”Computer Science Education” sec-
tion has two papers. The first paper, by Maciej Borowiecki and
Katarzyna Oledzka, is about a coding school planned for teachers
who need support in conducting classes on the basics of program-
ming. The second paper, by Mareen Przybylla and Ralf Romeike,
reveals the findings of a survey investigating students’ perceptions
of their informatics classes, computing systems and embedded sys-
tems as informatics devices.

In the section on ”Competence Measurement for Informat-
ics”, there are also two papers. Thomas Schiller and Peter Micheuz
present concrete approaches for teaching information security within
existing frameworks and reference models, and then focus on the cur-
rent situation in Austria. Then Ján Gunčaga and Mária Karasová
evaluate several issues regarding informatics education in primary
schools in Slovakia; showing examples and discussing their positive
and negative aspects.

Innovative use of technologies and tools are addressed in the
section named ”Emerging Technologies and Tools for Infor-
matics”. In their paper, Mahdi Miled, Christophe Reffay and Mona

v

Laroussi share preliminary results of a large-scale experiment about
the use of a prototype called HiPPY (an epistemic HyPermedia to
learn PYthon language). This is a tool which is currently integrated
in the France-IOI platform to study solving strategies mainly within
French high schools. Then we have Michael Weigend, who discusses
how to use metaphors from everyday life to elaborate spreadsheet-
related concepts, and presents findings from two paper-pencil-and-
pencil exercises.

In this book, specific issues about ”Teacher Education in In-
formatics” are discussed by Erik Barendsen, Valentina Dagienė,
Mara Saeli and Carsten Schulte. The researchers focus on the Con-
tent Representation (CoRe) format as an instrument to elicit teach-
ers’ Pedagogical Content Knowledge (PCK) in the area of computer
education.

The last topic is ”Curriculum Issues”. Based on successful
lesson scenarios for computer science described as a pattern net-
work, Bernhard Standl and Wilfried Grossmann combine these pat-
terns with the Austrian standards, and propose a structure for how
the patterns can be used for the application of pedagogical-content
knowledge in computer science teaching. Then Sergei Pozdniakov
and Svetlana Gaisina analyse perspectives of the integration pro-
cesses of mathematics and informatics, and ways for a smooth tran-
sition to the Russian informatics curricula. In the last paper of this
section, Filiz Kalelioğlu, Yasemin Gülbahar, Sümeyra Akçay and
Dilek Doğan provide implementation suggestions for the integration
of Scratch into existing ICT curriculum, based on prior research of
the phenomenon, and discuss Scratch in terms of its possible contri-
bution to students’ computational thinking skills.

The book includes another section for ”Poster Presentations”,
where short summaries of posters are provided. We have seven poster
presentations, with various interesting topics in this section. Kadir
Burak Olgun, Gonca Kizilkaya Cumaoğlu and Sevinç Gülseçen inves-
tigate the effects of a programming course on middle school students’
reflective thinking skills towards problem solving, and then Mehmet
Fatih Erkoç and Sevinç Gülseçen research the Effect of Collaborative
Game Design on Critical Thinking, Problem Solving and Algorithm
Development Skills. In her presentation, Sebnem Özdemir discusses
the contributions of Universities to Children’s Informatics Educa-
tion in Turkey, and Gaisina Svetlana Valer’evna analyses the quality
of teaching computer science and ICT in St. Petersburg. Follow-
ing those, Andreas Grillenberger and Ralf Romeike focus on data
management issues, underlining that it is more than a matter of
computer science. Then Ilya Gosudarev writes about broadcasting
web-development, mobile teaching and learning, while Cem Turan

vi

looks at quality in education by questioning if it is technology by
mechanicity, or methodology by humanity.

Short summaries of the workshops held are provided under the
”Workshops” section. Peter Micheuz offers a workshop about ”Ed-
ucational Standards in Informatics/ICT at Lower Secondary Level”,
whereas Orçun Madran provides an insight about ”Robotic Pro-
gramming for Teaching Programming Languages”. Natasa Grgurina
and Erik Barendsen share information about ”The State of Affairs in
Dutch Informatics Education” and Michael Weigend presents hands-
on activities for teaching ”Python”.

This conference event and book have been organized to highlight
the importance of Informatics Education. It is my sincere pleasure
to thank all those who have contributed to ISSEP 2014 for their
academic insights. In addition to those already mentioned, there are
many people who also contributed to the preparation, organisation,
communication, as well as the reviewing and publishing processes
for this conference. I would like to extend my gratitude and sin-
cere thanks to members of the organising and programme commit-
tee for their time and conscientious work. Special thanks also to
Erinç Karataş and Müge Adnan for their help with the proceedings,
and finally, a special thanks to Ira Diethelm, who provided guidance
throughout the whole conference process.

June 25 2014 Yasemin Gülbahar

vii

Program Committee

Müge Adnan Mugla University, Turkey
Ayfer Alper Ankara University, Turkey
Bahar Baran Dokuz Eylul University, Turkey
Torsten Brinda Universität Duisburg-Essen, Germany
Valentina Dagiene Vilnius University, Lithuania
Ira Diethelm Oldenburg University, Germany
Çiğdem Erol Istanbul University, Turkey
Nuray Gedik Akdeniz University, Turkey
David Ginat Israel Institute of Technology, Israel
Yasemin Gulbahar Ankara University, Turkey
Jan Guncaga Catholic University in Ruzomberok, Slovakia

Sevinç Gülseçen İstanbul University, Turkey
Juraj Hromkovič ETH Zürich, Switzerland
Ivan Kalaš Comenius University in Bratislava, Slovakia
Erinç Karataş Ankara University, Turkey
Janka Majherova Catholic University in Ruzomberok, Slovakia
Roland Mittermeir Alpen-Adria-Universität Klagenfurt, Austria
Ferhan Odabasi Anadolu University, Turkey
Malgorzata Pankowska University of Economics in Katowice, Poland
Zerrin Ayvaz Reis Istanbul University, Turkey
Ralf Romeike Friedrich-Alexander University Erlangen-Nürnberg,

Germany
Carsten Schulte Freie Universität Berlin, Germany
Sue Sentence Computing At School Cambridge, UK
Simon Simon University of Newcastle, UK
Maciej Syslo UMK Torun, U. Wroclaw, Poland
Erkan Tekinarslan Abant Izzet Baysal University, Turkey
Sacip Toker Mehmet Akif Ersoy University, Turkey
Pelin Yüksel Inonu University, Turkey
Erman Yükseltürk Kirikkale University, Turkey
Soner Yildirim Middle East Technical University, Turkey
Recep Çakir Amasya University, Turkey

ix

Conference Organization

Conference Chair
Yasemin Gülbahar (Co-Chair)
Sevinç Gülseçen (Co-Chair)

Additional Reviewers Winczer, Michal.

Organizing Committee
Yasemin Gülbahar Co-chair Ankara University, Turkey
Sevinç Gülseçen Co-chair Istanbul University, Turkey
Soner Yildirim Middle East Technical University, Turkey
Erinç Karataş Ankara University, Turkey
Müge Adnan Mugla University, Turkey
Orçun Madran Hacettepe University, Turkey

x

Secretariat
Hale Ilgaz Ankara University, Turkey

Şebnem Özdemir Istanbul University, Turkey

Table of Contents

Computer Science Education

Coding School for 10-12 aged students 3
Maciej Borowiecki and Katarzyna Oledzka

Overcoming Issues with Students Perceptions of Informatics in
Everyday Life and Education with Physical Computing 9

Mareen Przybylla and Ralf Romeike

Competence Measurement for Informatics

Didactics of Information Security as a Key Competence 23
Thomas Schiller and Peter Micheuz

Using ICT in Informatics Education and Selected Subjects in Primary
Education for Developing of Pupils Abilities 33

Ján Gunčaga and Mária Karasová

Emerging Technologies and Tools for Informatics

An early evaluation of the HiPPY tool usage: the France-IOI case study45
Mahdi Miled, Christophe Reffay and Mona Laroussi

A Formula is an Orange Juice Squeezer - Understanding Spreadsheet
Calculation Through Metaphors 57

Michael Weigend

Teacher Education in Informatics

Eliciting Computing Science Teachers’ PCK using the Content
Representation Format: Experiences and Future Directions 71

Erik Barendsen, Valentina Dagienė, Mara Saeli and Carsten Schulte

Curriculum Issues

Towards Combining Conceptual Lesson Patterns with Austrian K12
Computer Science Standard Curriculum in the Context of Pedagogical
Content Knowledge 85

Bernhard Standl and Wilfried Grossmann

New trend in Russian informatics curricula: integration of math and
informatics 91

Sergei Pozdniakov and Svetlana Gaisina

xi

Curriculum Integration Ideas for Improving the Computational
Thinking Skills of Learners through Programming via Scratch 101

Filiz Kalelioğlu, Yasemin Gülbahar, Sümeyra Akçay and Dilek Doğan

Poster Presentations

Effects Of Programming Course On Middle School Students Reflective
Thinking Skills Towards Problem Solving 115

Kadir Burak Olgun, Gonca Kizilkaya Cumaoğlu and Sevinc Gulsecen

The Effect of Collaborative Game Design on Critical Thinking, Problem
Solving and Algorithm Development Skills 117

Mehmet Fatih Erko¸c and Sevinc Gulsecen

Contributions of Universities to Childrens Informatics Education in Turkey. . .119
Şebnem Ozdemir

Analysis of the Quality of Teaching Computer Science and ICT 121
Gaisina Svetlana Valerevna

Data Management: More Than a Matter of CS123
Andreas Grillenberger and Ralf Romeike

Boardcasting: Web-Development Mobile Teaching and Learning 125
Ilya Gosudarev

Which One Leads The Quality in Education: Technology by
Mechanicity or Methodology by Humanity127

Cem Turan

Workshops

Educational Standards for Digital Competence at Lower Secondary Level. . . 133
Peter Micheuz

Robotic Programming for Teaching Programming Languages 135
Or¸cun Madran

Informatics Education at the Crossroads: Round Table on the Dutch Case. 137
Natasa Grgurina and Erik Barendsen

Discovering Python 139
Michael Weigend

xii

Author Index 141

Computer Science Education

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Coding School for 10-12 aged students

Maciej Borowiecki and Katarzyna Olędzka

Computer Assisted Education and Information Technology Centre, Warsaw, Poland
{maciej.borowiecki, katarzyna.oledzka}@oeiizk.waw.pl

Abstract. There are many examples all over the world which show that learning
programming is possible from early stages. However, it is not enough to equipped
schools with modern IT devices, but teachers need support in conducting classes
on how to introduce the basics of programming. Project Coding School tries to
meet this expectations.

The 8 lessons with applications in Scratch have been prepared not only to
show the basics of programming, but also to engage students to think creatively.
At first, teachers created these applications during courses, next they conduct
programming classes in their schools sharing knowledge and enthusiasm with
students. The project is realised in cooperation with Computer Assisted Educa-
tion and Information Technology Centre, Centre for Citizenship Education, As-
sociation Parents in Education with support of Samsung Company. In first part
of the project 1300 students have participated. Teachers have been from 34
schools from all over Poland.

Keywords: programming, primary school, Coding School, Scratch

1 Introduction

Polish students won many awards in international competitions and Olympiads in in-
formatics, but they are only an elite. An average student has less ability [1]. There is
a separate subject called computer classes (primary school) and informatics (middle
schools and high schools) in Polish schools. Each curriculum contains records of algo-
rithms and programming, but by many teachers it is treated as difficult materials and
they frequently reduce time spend on these topics or even omit this part. The reason is
that they do not feel to be prepared to teach algorithms and programming.

The main objective of the Coding School project [6] is popularization programming
in Polish schools, with particular attention to primary school pupils. In addition, there
is assumption that these activities can be conduct both by computer classes teachers and
by teachers of different subjects. The third principle of this project is that these lessons
should be attractive to students.

Starting from these assumptions, the initiator of the project Samsung company, in-
vited partners from both public organizations and non-governmental ones. The project
is realised in cooperation with Computer Assisted Education and Information Technol-
ogy Centre, Centre for Citizenship Education, Association Parents in Education. The

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Coding School for 10-12 aged students

Maciej Borowiecki and Katarzyna Olędzka

Computer Assisted Education and Information Technology Centre, Warsaw, Poland
{maciej.borowiecki, katarzyna.oledzka}@oeiizk.waw.pl

Abstract. There are many examples all over the world which show that learning
programming is possible from early stages. However, it is not enough to equipped
schools with modern IT devices, but teachers need support in conducting classes
on how to introduce the basics of programming. Project Coding School tries to
meet this expectations.

The 8 lessons with applications in Scratch have been prepared not only to
show the basics of programming, but also to engage students to think creatively.
At first, teachers created these applications during courses, next they conduct
programming classes in their schools sharing knowledge and enthusiasm with
students. The project is realised in cooperation with Computer Assisted Educa-
tion and Information Technology Centre, Centre for Citizenship Education, As-
sociation Parents in Education with support of Samsung Company. In first part
of the project 1300 students have participated. Teachers have been from 34
schools from all over Poland.

Keywords: programming, primary school, Coding School, Scratch

1 Introduction

Polish students won many awards in international competitions and Olympiads in in-
formatics, but they are only an elite. An average student has less ability [1]. There is
a separate subject called computer classes (primary school) and informatics (middle
schools and high schools) in Polish schools. Each curriculum contains records of algo-
rithms and programming, but by many teachers it is treated as difficult materials and
they frequently reduce time spend on these topics or even omit this part. The reason is
that they do not feel to be prepared to teach algorithms and programming.

The main objective of the Coding School project [6] is popularization programming
in Polish schools, with particular attention to primary school pupils. In addition, there
is assumption that these activities can be conduct both by computer classes teachers and
by teachers of different subjects. The third principle of this project is that these lessons
should be attractive to students.

Starting from these assumptions, the initiator of the project Samsung company, in-
vited partners from both public organizations and non-governmental ones. The project
is realised in cooperation with Computer Assisted Education and Information Technol-
ogy Centre, Centre for Citizenship Education, Association Parents in Education. The

3

project is under patronage of the Ministry of National Education and the Ministry of
Administration and Digitization.

Fig. 1. Logo of Coding School (in Polish Mistrzowie kodowania)

2 About the project

The pilot edition of the project was organized for primary school students aged 10 to
12 years. In the project also participated younger students. Students have been invited
from 34 schools all over Poland – 2 from each province and 2 additional ones from
Warsaw. They represented both urban and rural schools, large and small – the smallest
school had less than 100 students.

The Scratch was chosen as a programming language for this project because of its
features. It is design for visual programming to prepare students’ own interactive sto-
ries, games, and animations. Students share them with others in the online community.
As we can read on Scratch’s website [7], Scratch helps young people learn to think
creatively, reason systematically, and work collaboratively — essential skills for life in
the 21st century. We decided to prepare materials for 8 lessons of approximately 90
minutes each. Teachers were obligated to make this lessons in 2-3 months. The first
module was an introduction into programming environment. In the next modules stu-
dents design simple games. In the last one students create multimedia project associated
with the season of the year. The realization of this module came out in December, so
children prepared Christmas cards.

We know that it is not enough to prepare materials and deliver them to schools. This
is why two teachers from each school were invited on a three-day together training
programme. From each school one teacher specialized in computer classes whereas an-
other one in other subject – mathematics, science, history or even physical education.
During workshop teachers learned basics of the Scratch. They also took on a role of
students to create games and activities according to the given scenarios. They were
encouraged to show a lot of flexibility in modifications of the scenarios because we
want them to do the same in classrooms to let children implement their own ideas.
Moreover, the role of programming in education was presented and its impact on chil-
dren's creativity, as well as the role of independent investigation into knowledge. There
was a special time to integrate in the schedule of meeting, because we wanted to help

4

teachers to cooperate with each other, even if there was a big distance between schools.
During the training there was also organized a meeting with a representative of the
Association of Parents in Education.

The project organizers offered support during the implementation of activities in
schools. There was a contact with trainers by email or phone and the opportunity to
participate in discussion forum. This last form was the most popular one. Moreover, the
implementation of the activities in schools was continuously monitored. Teachers were
asked to write short reports after the completion of each module, which were published
on this forum. At the end teachers along with the 3-person representations of students
were invited for festival of projects. During one day meeting students presented their
works.

3 Scenarios and lessons

As it was mention above there were prepared 8 scenarios for 2-hours lessons. Their
titles are:

1. Introduction
2. A Cat Chasing a Mouse
3. A Cat in a Maze
4. A Cat Sets a Trap for a Mouse
5. Bouncing Balls
6. Guessing the Number
7. Racing Sprites
8. Multimedia Card

As an example, we describe one of the scenarios A Cat in a Maze. In this game a cat
moves forward, turns left and right to find the right path in a maze. We want students
after this lesson to know how to construct a simple script that responds to pressed key.
Students also should know how to use a conditional statement, a simple loop and con-
trol behaviour of sprite based on its location. Before lesson teacher prepares the board.

5

Fig. 2. The board for the game A Cat in a Maze

In the first part of the lesson teacher can ask different questions about the game. Exem-
plary question are:

� How the game starts?
� How can you control the sprite?
� What should happen when the sprite collides with a wall of the maze?
� How to rotate sprite to move it in a specific direction?
� What is going to happen when the sprite comes to the end?

Fig. 3. Scripts for controlling the movement of the sprite

6

These question will help students to realize what the rules of game are. Moreover, we
will stimulate children’s thinking to programming issues hidden in this task. Next, there
are many simple scripts that should be prepared – for example to control the sprite to
move forward, turn left and right. There are many possibilities to program such tasks,
for example – when we discuss recognition of the background colour of the sprite we
want the sprite when it touches a red colour, not to move forward 40 steps but to stay
in the same place. It can be realized by moving forward, checking the background col-
our and if it is red moving it backward, otherwise do nothing. In this part of the lesson
all main difficulties of the project should be presented.

The next step is to merge the whole project. Students import the background – a
maze which consists of green and red squares. In this project the sprite is a little bite
smaller than usual and it is placed on the top left corner. Students should also check if
the length of sprite’s movement is the length of squares. The last step is to prepare the
beginning script which will start the whole game.

Fig. 4. The beginning script

After finishing the basic core of game students can add something special. They can do
some modification. For example, if the sprite hits the red square it should not stay in
the same place but go to the beginning. Another idea is to add more boards like in many
games to make it more attractive. It is more complicated task to program it but much
more fun while playing.

Generally, such projects are not very complicated but extremely engaging for stu-
dents. They have a lot of fun, but what is more important they learn much. First steps
of programming are defeated and general impression is undoubtedly positive. It is im-
portant for their future.

4 The project evaluation

The project evaluation was conducted successively from different perspectives. Firstly,
teachers filled up a questionnaire after the workshop, secondly there was a monitoring
of the work conducted in schools and thirdly by the end of classes in schools external
evaluation was conducted [2]. Teachers highly assessed the prepared materials and the
training itself. The report [5] of the evaluation was prepared on the basis of 52 evalua-
tion questionnaires and telephone interviews with 10 teachers, who together led classes

7

for 949 students. In this report it is written that: The project Coding school was very
highly rated. Teachers found the program very well prepared. In their opinion it can
help to efficiently and friendly familiarizes with programming. They stressed that the
project helps student in creative and strategic thinking. Students can learn much more
that simply programming in the Scratch. They learn about reasoning thinking in terms
of cause-effect relationships, conditions and rules, practicing patience, accuracy and
cooperation with others. In surveys and interviews there are many expressions about
the pleasure of using the Scratch : it is fun, it is cool, students and teachers are in some
way seduced. From teacher’s relations it is an attractive activity, engaging and forces
concentration. The lesson time seemed to flow very quickly and students often ask to
extend such lessons. Both students and teachers fill that they achieved great success.
We may notice that the project is described as pleasant and satisfactory on the one hand
and connected with fear and difficulty on the other.

5 Summary

The pilot edition was attended in 34 schools, 70 teachers who teach about 1,300 stu-
dents. The project was highly appreciated both by teachers and educational authorities.
It is now continued for more than 100 schools from different parts of Poland. It should
be emphasized that all schools from the pilot edition, want to continue it with their
students. It is planned to extend the program through development of further materials
for primary schools and to extend idea for more mature students.

References

1. Eurostat (2012), Computer skills in the EU27 in figures, http://eu-
ropa.eu/rapid/press-release_STAT-12-47_en.htm

2. Filiciak,, M. et al.: Nauka programowania w szkołach. Czas na upgrade? Centrum
Cyfrowe, Warszawa (2013).

3. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc., New York, NY, USA (1980).

4. Papert, S.: The Connected Family: Bridging the Digital Generation Gap. National
Book Network (1996).

5. Tarkowski, A., Mazgal, A.: Nauka programowania w szkołach, Czas na upgrade –
perspektywa 2014. Centrum Cyfrowe, Warszawa (2014).

6. Mistrzowie Kodowania, http://mistrzowiekodowania.pl.
7. Scratch – Imagine, Program, Share, http://scratch.mit.edu.

8

Overcoming Issues with Students’ Perceptions of
Informatics in Everyday Life and Education with

Physical Computing

Suggestions for the Enrichment of Computer Science Classes

Mareen Przybylla1, Ralf Romeike2

1Didactics of Computer Science, University of Potsdam, Germany
2Didactics of Computer Science, University of Erlangen-Nuremberg, Germany

1przybyll@cs.uni-potsdam.de
2ralf.romeike@fau.de

Abstract. The same way that interactive computing systems gain more rele-
vance in our society, the development of easily programmable micro controllers
offers a new way of creatively designing computing systems at school. Physical
computing comprises the development of interactive objects and installations.
In this paper findings of a survey investigating students’ perceptions of their in-
formatics classes and of computing systems and embedded systems as informat-
ics devices are presented. Suggestions are made, how the identified issues can
be improved by implementing physical computing activities into computer sci-
ence classes and experiences described.

Keywords. physical computing, students’ perceptions, informatics classes, in-
terest, creativity, constructionism

1 Introduction

Physical computing is very popular among hobbyists and makers and starts becom-
ing increasingly popular in extracurricular computer science education contexts, such
as afternoon clubs or summer camps. However, it only plays a little role in classroom
settings. There are some approaches to teaching that are similar to physical compu-
ting and aim at complementing computer science classrooms with embedded systems
(e.g. [1–5]). In such projects, the advantage of haptic perceptibility is judged to be
positive. While in those concepts the imitation of existing embedded systems is fo-
cused, physical computing adds the inclusion of aspects of art and design and thus
offers new creative potentials for informatics lessons. Physical computing is happen-
ing when students use programmable hardware to creatively design and craft interac-
tive objects. “Interactive Objects […] perceive their environment with sensors, which
in turn deliver data to be processed by the microcontroller. According to the configu-
ration of the systems these data are processed and passed on to the actuators. In this
way, interactive objects communicate with their environment. They are created with

9

crafts, art and design material. They fulfill a particular purpose, which may be purely
artistic.” [6]. In English-speaking contexts, more and more scientific publications
devote themselves to the topic. Paulo Blikstein for instance has investigated physical
computing kits for their underlying design principles [7]. Despite its potentials for
constructionist learning environments for computer science, physical computing in
education is mainly used by non-computer scientists, e.g. in arts, physics or biology
classes. In the ongoing research it is intended to analyze what effects physical compu-
ting has on students in computer science classes by investigating the impacts on stu-
dents’ motivation, creativity, constructionist learning, learning success, growth in
competences and their understanding of computer science and computing systems. A
recent study among students in secondary schools in Berlin and Brandenburg has
delivered some interesting insights concerning their understanding of informatics
devices and their perception of computer science classes. The results of this study are
presented and discussed in this paper and conclusions drawn towards the implementa-
tion of physical computing activities in the computer science classroom. In a first
school experiment with ninth-graders physical computing was conducted in the con-
text of computer science with “My Interactive Garden” (MyIG) [8] and the approach
of ‘informatic pottery making’. The school experiment gave a first impression of stu-
dents’ acceptance of the approach and the added value of physical computing to the
class [9]. The approach and experiences are briefly described in this paper.

2 The Survey

In order to investigate the effects of physical computing activities on learners and
how learners are influenced by physical computing activities, as a first step a ques-
tionnaire was developed to investigate students’ understanding of informatics devices
and their perception of computer science classes. This study was conducted with stu-
dents in secondary schools in Berlin and Brandenburg who had no physical compu-
ting experience with the aim of getting an overall impression of the current situation
and of the applicability of the questionnaire.

2.1 Objectives of the Survey

The survey presented here aimed at receiving students’ assessment of their infor-
matics classes concerning creativity and constructionist learning, as both are meaning-
ful and promising for computer science education with regard to deeper learning and
better results [10–12]. However, they are rarely visibly applied in the classroom. An-
other aim of the study was to investigate students’ perception of informatics devices
in everyday life. Nowadays products of computer science pervade students’ everyday
lives. There are sensors and actuators everywhere around us, embedded in computing
systems that ease and enrich our lives in many ways, but in informatics classes very
often the personal computer is the dominant medium of discussion. In this respect it
was also an objective of the study to find out about students’ experience with robotics,
embedded systems or physical computing activities.

10

2.2 Cluster Sampling: Participants

As it is impossible to ask every student for his or her opinion, the method of choice
was cluster sampling. Participants were chosen from different schools and school
types, grades and federal states to allow for comparisons between different groups of
students and to raise heterogeneity of the participants chosen. The survey was con-
ducted with 115 students from four different schools in the Berlin/Brandenburg area.
113 out of 115 students returned the questionnaire. 62 of the participants were male,
51 female. Students from grades seven, nine, eleven and twelve as representatives for
their age groups – students in lower and upper secondary education – were given the
questionnaires. In sum, the questionnaires of 80 students in lower and 33 students in
upper secondary education were evaluated. The lower number of upper secondary
students is explained by two reasons. First, in upper secondary education informatics
classes are not obligatory for students. Second, upper secondary at “Gymnasium“
only consist of eleventh and twelfth grade. That results in smaller classes and fewer
students. In lower secondary education 22 participants were currently in seventh
grade and 58 in ninth grade. Among the ninth-graders 34 students attended “Ober-
schule” (general education, grades seven to ten, degree confirms VET maturity and
depending on the marks qualification for high school) while all the other participants
attended “Gymnasium” (grades seven to twelve, degree confirms eligibility to study
at a university). In upper secondary 19 students took a “Grundkurs” (basic course)
and 14 students were enrolled in a “Leistungskurs” (advanced course).

2.3 Survey Method: Questionnaire

Participants in studies perceive questionnaires as more anonymous than personal
interviews. This results in more reliable data, since people are more likely to answer
honestly when they know their replies cannot be traced back to them [13]. This is
particularly important in school settings, where students might fear that given answers
could influence their marks. It was therefore decided, not to interview students per-
sonally but to hand them self-administered questionnaires to be filled in anonymous-
ly. They did this in class so that all participants filled in their questionnaires under
similar conditions. Teachers were given detailed instructions with the questionnaire
about how to perform the session.

The first part of the questionnaire contained questions concerning the person and
thus collects the independent variables: gender, age, federal state, school type, city,
school, grade, attended school courses and experience with robotics or embedded
systems. The second part of the question investigates on students’ perception of their
computer science classes and the third part of the questionnaire aims at informatics
perception in everyday life.

To investigate students’ perception of their computer science classes it was decided
to use a four-point Likert scale (Table 1). Questions for the Likert scale part were
designed based on characteristics of constructionist and creative learning environ-
ments, which both share many characteristics with intrinsic motivation [10, 12, 14].

11

Table 1. Questions to find out about students’ perceptions of informatics classes

 Strongly
agree

Agree Disagree
Strongly
disagree

Cannot
tell

Informatics classes allow me to independently
gain new ideas, solutions or insights. ☐ ☐ ☐ ☐ ☐
In informatics classes I can experiment a lot. ☐ ☐ ☐ ☐ ☐
I use knowledge from informatics lessons out-
side school. ☐ ☐ ☐ ☐ ☐
Informatics classes are fun for me. ☐ ☐ ☐ ☐ ☐
In informatics classes, I can be creative. ☐ ☐ ☐ ☐ ☐
Topics of informatics lessons are interesting for
me. ☐ ☐ ☐ ☐ ☐
In informatics classes, we can create larger
products together. ☐ ☐ ☐ ☐ ☐
I have presented products of informatics lessons
to my friends or family. ☐ ☐ ☐ ☐ ☐
In informatics lessons we create similar things as
artists and designers. ☐ ☐ ☐ ☐ ☐
In informatics classes I can implement my own
ideas. ☐ ☐ ☐ ☐ ☐
In informatics classes we work on many differ-
ent projects / products. ☐ ☐ ☐ ☐ ☐
In informatics lessons I can invent new things. ☐ ☐ ☐ ☐ ☐
I understand the subject matter in informatics
education. ☐ ☐ ☐ ☐ ☐
I can try many things in informatics education. ☐ ☐ ☐ ☐ ☐

The indicators for constructionist learning environments give an impression on
how students perceive their lessons. The results do not show if students actually are
learning in constructionist learning environments, but rather if the settings of their
lessons promote constructionist learning. The following test items were used to meas-
ure in how far current informatics classrooms promote constructionist learning in the
perception of students:

1. I use knowledge from informatics lessons outside school. (relevance, usefulness)
2. In informatics classes we work on many different projects / products. (student’s

field of interest)
3. Topics of informatics lessons are interesting for me. (student’s field of interest)
4. In informatics classes, we can create larger products together. (collaboration in

construction)
5. In informatics classes I can implement my own ideas. (self-determined learning)
6. I have presented products of informatics lessons to my friends or family. (create

meaningful products to show around)

Those test items were weighted according to their importance. Questions 1, 3, 5
and 6 are each assigned three points, as they build constructionist pillars. Item two is
an indirect indicator for settings where students’ interests are covered, as many differ-

12

ent projects should cover many different fields of interest. This item is therefore as-
signed two points. Similarly item 4 is treated: as according to the constructionist theo-
ry people learn through making (constructing) things, it is a key feature of construc-
tionist learning environments to offer students space for creating. In collaboration this
works a lot better than e.g. in competitions. This item is therefore valued one point.

The indicators for creativity do not measure if students are creative, but if they feel
that in their informatics classes they can be creative. Along with a number of test
items a control question was placed to find out if students have the same understand-
ing of creativity as the conductors of the survey. Some of the test items are indicators
for creativity and constructionist learning, they will therefore be listed again. The
following test items were used to measure how creative current informatics class-
rooms are in the perception of students:

1. Informatics classes allow me to independently gain new ideas, solutions or in-
sights. (self-determined learning, different approaches to finding solutions)

2. In informatics classes I can experiment a lot. (experimental methods)
3. I use knowledge from informatics lessons outside school. (relevance, usefulness)
4. In informatics classes, I can be creative. (control question)
5. In informatics lessons we create similar things as artists and designers. (creative

products)
6. In informatics classes I can implement my own ideas. (self-determined learning,

different approaches to finding solutions)
7. In informatics lessons I can invent new things. (creative products)
8. I can try many things in informatics education. (risk taking, choices)

Again, the test items are weighted according to their importance. Items 1, 2, 6 and
8 are clear indicators of a setting that invites learners to be creative, with item 6 being
used as a confirmation question for item 1. They are valued three points each. Items 5
and 7 are very similar to each other again and thus treated as test and confirmation
questions, each valued two points. Item 3 is not directly connected to creative learn-
ing, but shows that knowledge and competences gained during informatics lessons are
relevant for the learner’s private life; it is valued one point. Item 4 contains the con-
trol question and will be evaluated separately as well as comparatively.

To investigate students’ perception of computing systems and embedded systems
in everyday life, they were given little tasks, e.g.:

A) List five everyday objects that have informatics inside
B) What would you like to invent with the help of informatics? Give as many ex-

amples as you come up with.

To find out about students’ interest in different project proposals they were asked
to grade different ideas with school marks (Table 2).

Value the following project proposals with the school grades 1 to 6 according to
how much you would like to participate in the project (1: very gladly, 6: extremely
reluctantly; each grade should be assigned exactly once):

13

Table 2. Project ideas to be graded by students

 1 2 3 4 5 6
Solving mathematical problems ☐ ☐ ☐ ☐ ☐ ☐
Simulation of a slot machine ☐ ☐ ☐ ☐ ☐ ☐
Creating a mobile app ☐ ☐ ☐ ☐ ☐ ☐
Controlling a robot vehicle ☐ ☐ ☐ ☐ ☐ ☐
Creating interactive clothing ☐ ☐ ☐ ☐ ☐ ☐
Creating an interactive mood lamp ☐ ☐ ☐ ☐ ☐ ☐

2.4 Findings and Conclusions

In the first part of a larger study, the general aim was to find out about students’
perception of their environment concerning computing systems and embedded sys-
tems as informatics devices and about their perception of their informatics classes,
which are most likely not rich of embedded systems, robotics and especially physical
computing activities concerning creativity and constructionist learning.

Informatics Devices. Experience has suggested that, despite the ubiquity of such
devices, most students do not think of embedded systems when thinking about infor-
matics devices in their everyday life and instead rather list “obvious” computing de-
vices such as personal computers, mobile computers, tablets, smart phones and iPods.
The survey asked students to list everyday objects that have informatics inside.

Fig. 1. Tag cloud and word frequency generated from students’ answers

A word analysis of the proposals made by students shows that indeed most of them
do not come up with embedded systems as informatics devices. Very often students
are not aware that informatics is very present in many areas of their everyday life
apart from personal computers and smart phones: cars for instance were only named
by ten students out of 113 – that is 9% only; which is particularly alarming as this
together with washing machines is the most frequent occurrence of embedded compu-
ting devices (Fig. 1). This is accompanied by the fact that computer science students

14

often perceive this subject as covering abstract and escapist themes that are only suit-
able for a special clientele of talented informatics students [15].

Robotics Experience. Based on experiences from classroom visits and conversation
with teachers and teacher students it was assumed that only few students have ever
had the chance to participate in robotics, embedded systems or physical computing
projects at school. It was further assumed that if at all, such projects were mostly ro-
botics projects taken in afternoon clubs or at home as a hobby. When asked about
their experience with robotics and embedded systems, 22 students (19%) replied posi-
tively. All of them were engaged in building robots; none had named any embedded
systems or even physical computing activity. Those who stated a particular robotics
kit, all named LEGO Mindstorms. As expected, the large majority of students had
never programmed any embedded device or robot. It is also shown, that all of the
students who have had any experience, gained it in their leisure time, either as a hob-
by or in afternoon clubs at school, club houses, etc.

Constructionist Learning. When it comes to programming, students sometimes
complain that programs they develop in school were useless, irrelevant for their lives
and not meeting their expectations with respect to what they had imagined ‘learning
to program’ would mean. It was therefore assumed that the majority of students tak-
ing informatics classes would not perceive their classrooms as settings where con-
structionist learning takes place. In the survey students were asked to evaluate test
items on a four-point Likert scale. One of these items was the statement “I have pre-
sented products of informatics lessons to my friends or family.” Only 45 students
(40%) answered in the affirmative by ticking either ‘agree’ (29) or ‘strongly agree’
(16); more than half of the students (64 students, 57%) answered in the negative by
ticking ‘disagree’ (31) or ‘strongly disagree’ (33).

Creativity. It was assumed that creativity is not a very dominant feature of students’
perception of informatics classes. Classroom visits often give the impression of very
teacher centered approaches, old-fashioned methods despite using modern tools and a
lack of student participation in finding problems to solve. When asked directly, 46 of
113 students (41%) stated that they can be creative in the computer science class-
room. Interestingly, this is in contrast to the results shown by creativity indicators.
Only nine students (8%) have classified their informatics lessons as creativity promot-
ing according to those criteria.

Interests. It was assumed that students are more interested in activities that involve
real-world objects than virtual objects and that mathematical problems are the least
interesting subject on the list. The survey has shown, that on average 42% of the stu-
dents were interested in creating robots, but when analyzing the data of female partic-
ipants, it were only 29% as opposed to 53% of the males. Similar results were brought
up by the suggestion to design interactive clothes, only that this time 65% of the fe-

15

male students were in favor for such a project as opposed to 18% of the boys. As
expected, solving mathematical problems was the least interesting project for most
students: 36% graded it with on of the marks 5 or 6.

Summarizing, the results of the survey confirm the expectations based on the au-

thors’ experience: only few students experience creativity-rich lessons in construc-
tionist learning environments. Despite the popularity of such activities, none of the
students who participated in the survey ever had the chance to participate in computer
science projects that involve physical computing, embedded systems design or robot-
ics activities in a regular school lesson. Of course with 113 students those findings
should not be generalized and overestimated, but they should stimulate teachers to
reflect if they can improve their lessons. According to the constructionist learning
theory, learning is most effective when learners construct knowledge and develop
competences from their own initiative and for a personally relevant purpose [10].
Resnick added: “What’s important is that they are actively engaged in creating some-
thing that is meaningful to themselves or to others around them” [11]. In construction-
ist settings, learners will thus develop meaningful products they present to and discuss
with friends and family. As shown by Romeike [12], creativity has positive effects in
many respects: students who undertook a creativity-rich lesson series have shown
higher motivation, interest, better results and a better understanding of informatics. In
order to provide students with the opportunity to recognize and understand embedded
systems they can find in their daily environments, it seems reasonable to address these
as subjects in computer science classes. After a long period of time when software
development has dominated the design-oriented part of informatics education, it is
now time to link the virtual and the real world.

3 Physical Computing as Informatic Pottery Making

For the reasons mentioned above, it is desirable to eliminate the identified defi-
ciencies. One way to address the problem is a more in-depth study of physical compu-
ting in order to situate new contents within the field of computer science education. In
contrast to attempts that mainly deal with rebuilding or imitating existing embedded
systems, physical computing emphasizes a greater involvement of aspects of art and
design, which opens up a wider range of opportunities to become creative. Physical
computing further allows students to develop concrete, tangible products of the real
world, which arise from the learners’ imagination. This way, constructionist learning
is raised to a level that enables students to gain haptical experience and thereby con-
cretizes the virtual. Vahrenhold [16] mentioned that computer science education lacks
a “Going to Paris Effect”. While for students and their parents the aim of learning the
French language to be able to communicate on a journey to Paris is obvious, such an
aim is missing for informatics students beyond improvements in computer use. Under
the aspect of Informatic Pottery Making we see it as a result of computer science les-
sons, that children – similar to making a vase in pottery class – may bring home from
school digital, interactive artifacts they themselves have created and programmed in

16

computer science class and that can be investigated, shown around and admired in a
constructionist sense. Based on this understanding, computer science will become
personally relevant for students [6].

Implementing physical computing activities in the computer science classroom
means making decision concerning hardware, programming environment and the
teaching context. Students’ interests differ greatly depending on age, gender and even
school form. It is therefore necessary to find a context that allows both, boys and
girls, to follow their interests. With “My Interactive Garden” (MyIG) such a context is
provided to students. MyIG includes a constructionist learning environment, which
allows informatics students to craft, design, program and build their own interactive
objects. It entails a construction kit based on Arduino that includes preassembled
sensors and actuators and a shield that allows to plug in (Fig. 2). The aim of learning
with MyIG is to collaboratively create an exhibition of interactive objects as they
could be found in a futuristic interactive garden. Such objects can be anything from
magical flowers over noisy scarecrows to interactive party lights.

Fig. 2. Arduino with MyIG shield and pluggable sensors and actuators

This framework allows for multiple and manifold projects and triggers students’
creativity. With reference to [2] the following strategies are recommended:

Focus on themes, not just challenges. If provided with themes instead of concrete
tasks, students can find their own projects to work on, follow their own interests and
find their own problems to solve.

Combine arts and computer scientific modeling. When an artistic component is
added, as described with the approach of informatics pottery making, the subject will
become personally relevant to students and call for creativity which leads to more
diverse and interesting projects and problems to solve.

Encourage storytelling. When encouraged to tell a story about their creation, stu-
dents will link their objects to the real world and reflect on influences their invention
may have on the society. They will also tend to design their interactive objects ac-

17

cording to what they want them to do instead of thinking about what they are able to
make them do, which in the end may lead to deeper learning and understanding.

Organize exhibitions rather than competitions. Collaborative work is a very valua-
ble means of constructionist learning. As has been mentioned earlier, a key idea is
that learners are engaged in creating artifacts that are personally relevant for them and
for others around them, which can be discussed and investigated with others. In col-
laborative work there is a need to discuss the single parts of a bigger project with the
contributors, thus it matches perfectly to constructionist learning.

3.1 Experience

MyIG was piloted in a school experiment with students of a ninth grade and gave a
first impression of students’ acceptance of informatic pottery making, balance be-
tween informatics and crafting activities and the added value of physical computing.
Data was collected with questionnaires and by observing the students. There were
first tendencies observed in this pilot project, suggesting that physical computing may
help students in expanding their understanding of computing systems. The students
liked the pottery making approach and the amount of crafting influenced the amount
of programming positively: the more complex the students’ interactive objects be-
came, the more complex were their programs [9]. These data are not statistically val-
id, since only a very small number of students were involved in the project. It was a
first trial to test the approach and figure out difficulties. Nevertheless there was a lot
to be learned from the students’ way of dealing with physical computing.

Competences. Many skills and competences can be gained with physical computing;
some are more obvious than others. While it is very clear that programming concepts
and control structures such as decisions and loops, variables, comparisons or arithme-
tic operations will be needed to create objects that can blink, move and make sounds
reacting on influences from their environment, several additional topics become rele-
vant for students. One student for instance investigated a temperature sensor and
stumbled about the difference of data and information: he read values and noticed that
those were not matching any temperature scale he knew. Further research led him to
the conclusion that the values he read were “raw data” that needed to be interpreted.
Students also learned about sensors and actuators, about the difference and use of
analog and digital data when controlling actuators, about the use of exchanging mes-
sages between programs, about communication in work-sharing projects and many
more. Altogether they gained diverse competences on their personal levels that went
beyond algorithmic thinking.

Extendibility. Physical computing projects are never complete. This does not mean,
that they will never reach a sufficing level, but that they allow for iterative work. Stu-
dents always found possibilities to improve either the design or functionality of their

18

interactive objects and installations. One of the students for instance had built a sun-
shade that automatically opened when it was bright enough. When he had finished, he
added an additional feature to save power: a button was included that needed to be
pushed in order to activate or deactivate the mechanism.

Motivation and Creativity. Students are very ambitions when working on their own
projects. They had many creative ideas, even brought crafting materials to school.
Their projects became very complex and they rarely discarded any ideas. They
praised each other for their achievements and in the end were really proud about the
interactive garden they had made (Fig. 3).

Fig. 3. Students’ projects "Automated Gate", "Clever Letterbox" and "Smart Sunshade"

4 Discussion

Computer science teaching has always been faced with the challenge of providing
time stable ideas and concepts but to motivate them by picking current issues as cen-
tral themes and using modern tools. Physical computing offers the opportunity to
transfer the potential of creative design possible with software development into
products of the real world. Considering the motivational value a self-created product
offers, such as by potters, it becomes quickly clear that this can also be used in com-
puter science education. The combination of informatics with art and design has the
potential to appeal to less computer-savvy students, too.

Our Experiences show that students have fun with physical computing. They ex-
pressed this verbally, but it was also visible in the lessons. They often wanted to stay
longer to continue their work. Students also asked where they could buy physical
computing construction kits for their homes, as they only had the chance to work on
their interactive objects once a week.

Until now, physical computing is regarded as an interesting and exciting phenome-
non by many teachers, but for most of them it has not been suitable for classroom use
due to the technical complexity of breadboard and soldering activities. With MyIG
and similar construction kits (e.g. TinkerKit, Hummingbird) teachers are provided
with ideas and solutions to this problem. A detailed analysis to extract and define
topics relevant for physical computing and to define fields of competencies that can
be gained with physical computing is yet to come and will be in focus for the ongoing
research.

19

5 References

1. Strecker, K.: Wie viel Programmierkompetenz braucht der Mensch? LOG IN. 169/170.
40–47 (2011).

2. Rusk, N., Resnick, M., Berg, R., Pezalla-Granlund, M.: New Pathways into Robotics:
Strategies for Broadening Participation. Journal of Science Education and Technology 17.
59–69 (2008).

3. Baumann, R.: Eingebettete Systeme verstehen. Teil 1: Kreatives Experimentieren mit
Arduino. LOG IN. 171, 33–45 (2011).

4. Baumann, R.: Eingebettete Systeme verstehen. Teil 2: Arduino zwischen analoger und
digitaler Welt. LOG IN. 174, 37–48 (2012).

5. Pelz, L., Arnhold, W.: Die Waschmaschine - Embedded Computing im Alltag. Workshop:
12. GI-Tagung der Fachgruppe "Informatik-Bildung in Berlin und Brandenburg". Berlin
(2013).

6. Przybylla, M., Romeike, R.: Physical Computing im Informatikunterricht. In: Breier, N.,
Stechert, P., and Wilke, T. (eds.) Informatik erweitert Horizonte. 137–146. Lecture Notes
in Informatics, Kiel (2013).

7. Blikstein, P.: Gears of Our Childhood: Constructionist Toolkits, Robotics, and Physical
Computing, Past and Future. Interaction Design and Children 2013. 173-182. ACM, New
York (2013).

8. Przybylla, M., Romeike, R.: My Interactive Garden – A Constructionist Approach to
Creative Learning with Interactive Installations in Computing Education. Proceedings of
Constructionism 2012. 395-404. Athens (2012).

9. Przybylla, M., Romeike, R.: Physical Computing mit „My Interactive Garden“.
Department of Computer Science, CAU, Kiel (2013).

10. Papert, S., Harel, I.: Situating Constructionism. In: Papert, S. and Harel, I. (eds.)
Constructionism. Ablex Publishing Corporation, Norwood (1991).

11. Resnick, M.: Distributed Constructionism. International Conference on Learning Sciences.
280-284. ACM, New York (1996).

12. Romeike, R.: Kreativität im Informatikunterricht. Dissertation Thesis, Potsdam (2008).
13. Bortz, J., Döring, N.: Forschungsmethoden und Evaluation: für Human- und

Sozialwissenschaftler. Springer-Verlag, Berlin, Heidelberg, New York (2003).
14. Ryan, R.M., Deci, E.L.: Intrinsic and Extrinsic Motivations: Classic Definitions and New

Directions. Contemproary Educational Psychology. 25, 54–67 (2000).
15. Knobelsdorf, M.: Biographische Lern- und Bildungsprozesse im Handlungskontext der

Computernutzung. Dissertation Thesis, Berlin (2011).
16. Vahrenhold, J.: On the Importance of Being Earnest: Challenges in Computer Science

Education. Proceedings of WiPSCE 2012. ACM, New York (2012).

20

Competence Measurement for
Informatics

21

Didactics of Information Security

as a Key Competence

Thomas Schiller1, Peter Micheuz2

1 BG / BRG Ramsauerstraße and

Pedagogical University of Upper Austria, 4020 Linz

2 Alpen-Adria University Klagenfurt, 9020 Klagenfurt

peter.micheuz@aau.at

Abstract. This paper deals with teaching and learning information security at

school level. It starts with current descriptions of this broad term, its implications on
society in general and on its curricular implementation. A brief overview shows how
it fits into many guidelines, reference models and existing curricula for digital
competence and computer science. As an indispensable part of informatics
information security must be regarded as a key competence pupils and students have
to acquire, preferably in a formal and ensured way at school. After presenting
concrete approaches of teaching information security within existing frameworks and
reference models, a focus is laid on the current situation in Austria.

Keywords: teaching, learning, information security, key competences, computer
science education

1 Introduction

 “Information security is all about protecting and preserving information. It’s all
about protecting and preserving the confidentiality, integrity, authenticity,
availability, and reliability of information” [15]. It “encompasses the study of the
concepts, techniques, technical measures, and administrative measures used to protect
information assets from deliberate or inadvertent unauthorized acquisition, damage,
disclosure, manipulation, modification, loss, or use” [17].

These definitions make clear that information security has to be regarded and
treated as a multidisciplinary area of study and activity. It is concerned with
understanding, developing and implementing security mechanisms with respect to
technical, organizational, human-oriented and legal issues. It plays an outstanding role
in all systems in which information is created, processed, stored, transmitted and
deleted.

All items listed in these definitions are very important and relevant for teachers and
students, especially in times of heavy usage of smartphones and social networks. Do I
have my (posted) data under control? Is it really my friend behind a possibly faked

23

digital identity? There are many other questions to deal with, for example,
cybermobbing as a possible consequence of taking pictures of persons causing
inconvenient and serious situations because of the spatial distance between offender
and victim.

Information security, especially seen as a subject matter to be provided in schools,
covers a wide range of challenges from social aspects as illustrated above to technical
questions such as understanding techniques like encryption and verification
mechanisms.

In this paper the term information security holds also for safety issues. It is not
intended here to elaborate on linguistic issues which are often language specific. In
German, for instance, there exists only one expression for security and safety, namely
“Sicherheit”. As information is - broadly speaking - individually interpreted data, we
permissively also include data protection in our considerations. In contrast to
information security, data protection deals mainly with technical aspects, not to
confuse it with privacy which is person centered.

2 Information Security Embedded in Frameworks

Looking at exemplary didactic approaches and its characteristic guiding principles
for teaching, information security seems to fit in nearly all theoretical considerations
and concepts of computer science education, and moreover, affects other disciplines
at school level as well.

Baumann’s guidelines for computer science education are problem solving,
principles of computer science systems and foundation and limits of information
science knowledge processing [1, p. 66]. From his perspective, computer science
systems “represent knowledge of different type and origin, process this knowledge
representation in form of data and programs and to users in a suitable form." [1, p.
63]. Further guidelines, e.g. Hubwieser’s information-based approach encompassing
presenting information, processing and transport of information and interpretation of
information representation [14, p. 81], can be seen as the common basis and
theoretical rationale for dealing with information security.

In 2001 an expert group of the German society for computer science compressed
many existing guidelines in form of "recommendations for a comprehensive approach
to computer science education in schools for general education” [11]. This seminal
concept consists of four guidelines dealing with information, active principles of
computer science systems, problem solving with computer science systems and
working with models [18, p. 56- 57]. Based on these guidelines, system and
application competence, dealing with structures, functions, limitations, safety and
effects of (networked) computer systems [10, p. 8], information security is embedded
well in a theoretical framework of computer science education.

Theoretical considerations are only one side of the coin, its practical implications
in implementing information security and its aspects in current curricula, frameworks
and not least in didactic settings and concrete lesson plans and tasks is the other one.
This chapter will give some answer regarding the approaches how this important
subject matter is represented in existing frameworks. We will see that information

24

security, seen in broader perspective including data protection, covers many aspects
of informatics and ICT. If it should be an obligatory part of general education to
understand also the technical basics as encryption and authentication behind complex
user interfaces, is up to discussion and depends on particular curricula.

Not least, “teaching Information security is raising awareness, creating attitude and
anchoring in behaviour” [12].

Competence is a buzzword dominating the educational field in Europe, gaining
much attention especially in the field of vocational education within the European
Qualifications Framework, where “it is seen as the most advanced element of the
framework descriptors and is defined as the proven ability to use knowledge, skills
and personal, social and/or methodological abilities, in work or study situations and in
professional and personal development and is described in terms of responsibility and
autonomy” [21].

In recent European policy recommendations there is a different definition of
competence. In the Key Competences Recommendation, competence is defined as a
combination of knowledge, skills and attitudes appropriate to the context [21].

In this paper, competence is understood as a set of knowledge, attitudes and skills.
Let us look exemplarily at three major frameworks to get a concrete and holistic view
on the field.

2.1 DIGCOMP – The Digital Competence Framework

The current Digital Competence Framework [4], initiated by the European
Commission, consists of five main competence areas: Information, Communication,
Content-Creation, Safety and Problem-Solving. Safety, which is equivalent to
Security, is one explicit competence area and encompasses the following
subcategories, denoted here as competences.

Table 1. “Safety” in the Digital Competence Framework [4]

����������������� �������������� ������������������
� � �
�������� Protecting devices

Protecting data and
digital identity

Protecting health

Protecting the
environment

Browsing, searching, filtering
information
Solving technical problems
Browsing, searching, filtering
information
Managing digital identity
Interacting through technologies
Netiquette
Innovating and creatively using
technology

It is not surprising that security issues are highly connected with other areas which

are made explicit in the competence matrix above.

25

Computing in schools is a wide field, and hopefully am still existing confusion

even among teachers should be soon a thing of the past as computing in schools can
easily be divided into three main areas: Educational Technology, Information
Technology and Computer Science. Expressed pointedly, it is all about the
fundamental difference between using IT to learn (technology enhanced learning),
learning IT to use (application of digital media) on the one hand and understanding
and developing software (systems) on the other hand (computer science or
informatics).

Information security is an essential part of all three above-mentioned areas. Until
now we have skipped computer science which indispensably has to come into play to
guarantee a basic understanding of information security on a technical level [3].

2.2 CSTA K-12 Standards for Computer Science

The prominent and seminal CSTA K–12 Standards for Computer Science can be
regarded as a worldwide recognized initiative to structure and implement computer
science at school level, serving as guidelines for informatics education throughout all
grades in primary and secondary education. These guidelines encompass the strands

• Computational Thinking,
• Computing Practice & Programming,
• Computers and Communication Devices,
• Collaboration,
• Community, Global and Ethical Impacts.

Not surprisingly, these strands have at a first glimpse very little in common with the
competence areas of the EU’s DIGCOMP framework. On second glance, there are
some accordances especially in the areas of problem solving and content creation.
Digital competence and computer science cannot be seen as disjoint areas. There is a
considerable mutual interdependence in which digital competence includes parts of
computer science and vice versa. Regarding the significance of information security
in these two approaches, it is obvious that the European approach attaches much more
importance to this issue. This is not only due the broad area of digital competence, but
apparently also to the European tradition of scrutinizing technology and having
reservations about its drawbacks.

This notwithstanding, within the detailed description of the strand Community,
Global and Ethical Impacts some Information security aspects get explicitly visible
“Principles of personal privacy, network security, software licenses, and copyrights
must be taught at an appropriate level in order to prepare students to become
responsible citizens in the modern world.” [3]. In the “scaffolding charts” with 170
“competences” describing the five strands more precisely, the term “security” is part
of the strand Community, Global, and Ethical Impacts within the subcategories
Responsible use, impacts of technology, information accuracy, ethics, laws, and
security, equity. Less than 10 competences are associated in a narrow sense with
information security, as for instance “Identify the impact of technology, e.g. (social

26

networking, cyberbullying, mobile and web technologies, cybersecurity, and
virtualization) on personal life and society (allocated for the age group of 10-12
years), and “Describe security and privacy issues that relate to computer networks”
for the age group of about 16 years old students.

It is true that this seminal paper lacks the listing of cross-references – this work has
still to be done – but the paper consists of about 20 elaborated and concrete lesson
plans which illustrate many, but not all of the 170 competences. Interestingly (but
understandably) no tasks deal with security issues. This might be due to the fact that
security issues are seen more likely to be a knowledge area than a field of activities.
The next chapter on ECDL confirms this assertion.

2.3 ECDL Security Modul

The widespread European Computer Driving License (ECDL) and its international
representation (ICDL), founded almost twenty years ago and having a remarkable
impact on IT in school education in some countries, has recently undergone a
considerable reform in structure and content. With the upcoming and dramatic shift
from standalone computers to connected digital devices with fascinating opportunities
to communicate on the one hand, but a variety of threats on the other, the ECDL
foundation developed within the standard modules such as presentation, databases or
image editing also the module IT Security.

The ECDL/ICDL does not claim to be a high level certificate providing
sophisticated and deep knowledge of a field. However, it offers candidates an
internationally recognized certificate about certain end-user computer skills. It is
explicitly addressing skills and a qualification as shown in the following table. It is
not about (deeper) competences. At first sight the skillsets and the underlying syllabus
meet very exacting requirements and connote completeness and coherence. But that is
immanent to most curricula and teaching plans. The certification process consists of
multiple choice questions and lacks the testing of practical knowledge. It is likely that
in the course of the preparation for this module often a mere teaching, learning and
training to the test takes place, resulting necessarily in superficial knowledge.

Table 2. ECDL IT-Security Modul [7]

Category Skillset

Security Concepts Data Threats, Value of Information, Personal
Security, File Security,

Malware Definition and Function, Types, Protection
Network Security

Networks, Network Connections, Wireless
Security, Access Control

Secure Web Use Web Browsing, Social Networking, Storage and
Compression

Communications E-Mail, Instant Messaging
Secure Data Management Securing and Backing up, Secure Destruction

27

3 Further Initiatives

The European Parliament defined eight key competences that should be
acquired by learners at the end of their compulsory education [21]. These key
competences include mastery of the native and one foreign language, learning to learn
and on fourth place digital competence. Digital Competence is defined as the critical
use of Information Society Technology (IST) including the responsible use of
interactive media, accompanied by basic skills in Information and Communication
Technology (ICT).

But long before, in Norway for instance, educative and safety-related measures
since 2000 have been taken [23], resulting in institutionalized initiatives to raise
awareness about information security. Besides the (intensive) media presence helping
to reach the whole population, the direct integration of teachers helps directly to
educate the children better targeted to modern technology and its (safety) issues.
(comp. [23])

 “Knowledge about information security must be strengthened. The National
Curriculum for Knowledge Promotion in Primary and Secondary Education and
Training has ICT as one of its five basic skills, and ICT is part of the professional
competency goals. Information security should therefore be included as a natural part
of ICT use in the educational framework. This places demands on basic education and
competency development for teachers and on teaching materials”. [19]

Similar developments could be observed also in many countries throughout
Europe. Saferinternet.at (Saferinternet.eu), co-founded by the European Commission
[22] is an interesting project resulting in brochures for students, teachers and parents
and organizing projects for the “Safer Internet Day” which is also carried out in
Austria.

4 The Austrian Case and Implementation Challenges

The general part of the computer science curriculum in Austria implies a deeper
insight into social contexts and implications of information technology (such as work
and leisure, as well as consequences for security and legal consciousness) [16, p. 1].
One of the listed teaching topics is “understand key measures and legal principles
related to data security, privacy and copyright, as well as learn about the impact of
technology on individuals and society” [16, p. 2, translated].

In general, teachers of all subjects should deal with this topic, but especially
computer science teachers should handle it due to their system competences and
(software) technical background.

The core problem is that troubles due to lack of awareness about information
security are starting much earlier, long before compulsory computer science lessons at
secondary level begin at the age-group of 15. Digital devices are nowadays reality for

28

pupils at secondary level I and even earlier. Increasing and easy access to the Internet
and using social networks at any time, sharing photos and videos as well as
unreflected use of data, resulting in severe issues as cybermobbing and sexting.

Therefore, Austrian institutions provide different facilities to raise the awareness
about information security, accompanied by support with teaching materials and
guides including completed online courses. Workshops with external presenters, even
from the police departments (“Click&Check”- Workshops [20]), for students, teachers
and parents can be booked. Due to inviting external experts, pupils find it more
interesting and the workshops can be placed after regular lessons which do not disturb
the scheduled teaching.

According to external recommendations as the Digital Agenda [6] and an ongoing

conversion from input oriented curricula to student-centred competence oriented
learning plans, similar frameworks have been developed for general education at
lower and upper secondary level, covering all age-groups, beginning with primary
education.

Table 3. Main Structure of Austrian reference models [8]

Digital Competences
at Primary and Lower Secondary Level

Informatics Education
at Upper Secondary Level

Information Technology, Human and Society

Responsibility in using IT, Data protection and Data Security
Informatics Systems

Software Applications Applied Informatics
Informatics Concepts Practical Informatics

All three reference models for primary, lower and higher secondary level education

contain the common main category “Information Technology, Human and Society”
including sub categories such as Responsibility in using IT, Data protection and Data
Security, and competences referring aspects of Information security in form of so
called descriptors with assessable “I can ...” statements. The framework for lower
secondary education contains 72 descriptors with 13 referring directly to security
issues. One of them, the competence “I can backup data and know about the risk of
loss of data” can be found in the technical category Informatics systems within the
competence area “Design and Use of Personal Informatics Systems”, which indicates
the inevitable and inherent cross-reference of information security issues.

Providing schools in a top down way with thoroughly elaborated frameworks,
reference models, curricula and syllabi, defining something like a common core
standard, is a necessary endeavour. It is, however, the first step on a long way to bring
written words into life and into schools, and into the heads of teachers and students.
To implement these standards, work is needed in three important areas: Teacher
preparation, commitment to these standards and curriculum materials development.

As the issue of materials is concerned, recently a big step forward has been
accomplished in form of a collection of worked out examples that integrate aspects of
information security. Currently, good and meaningful lesson plans and examples
about security issues represent still the minority because the topic seems to be more

29

knowledge than activity based. That could be related to the fact that activity based
assessments and tasks are rather expensive. As mentioned and reasoned above, among
twenty lesson plans worked out in the seminal CSTA position paper [3], there is none
dealing with information security. Most likely, this would not have happened if these
K-12 Computer Science Standards were released in 2013. Beyond hot topics as “the
state as big brother in times of NSA” there are plenty of interesting starting points as
cryptography, encryption and understanding the principles of malware.

Looking at the Austrian strategy to implement Digital Competences at lower
secondary level, [5] provides schools with a growing collection of ready to use tasks.
For reasons mentioned above, there exist explicitly not as many tasks as in other areas
as the production of digital media.

The construction of good lesson plans and meaningful tasks and assignments is
demanding, especially with respect to such a complex topic as information security,
which unfolds along the dimensions age-appropriateness and content-orientation
encompassing the whole range of sociological, human, legal and technical issues.

Due to the raising importance of information security it is necessary that existing
projects like Saferinternet.at are to be continued at least in form of maintenance of
providing schools with excellent teaching and learning materials and taking part in
actions like the Saferinternet Day or the European Cyber Security Month (Oct. 2013,
[9]).

We need both, the integration of information security aspects into teacher
education and in special Informatics lessons, but also a broader professional handling
on information security issues integrated in other disciplines. Moreover, through
teaching information security in a formal way at schools, raising the awareness on this
topic could be more easily supported through external institutions.

5 Conclusion

Recent worldwide initiatives indicate that information security can be regarded as a
fundamental idea and key competence, and therefore should be taught from primary
education on. Children in this age-group are attracted by topics like secret writing and
information hiding as proposed by initiatives as CS Unplugged [2]. Thus, security
issues can be the driver of computational thinking already at an early stage.

Whereas the approach in primary education is presumably a playful one, the
window of opportunity to foster awareness and to deepen knowledge about security
issues is wide open at lower secondary education. A vast majority of students in this
age-group of 10-14 years is personally deeply involved, as digital devices play a big
role in their lifes. Legal and technical issues should be an obligatory part of education,
preferably in a discipline in its own right. Due to increasing self-reflection, the
students should be prepared to take responsibility as digital citizens, and their
developing brain should be ready to grasp even basic concepts of data and
information security issues, resulting in a basic understanding of processes,
terminology and in mastering of associated software tools as well.

Building on a solid foundation provided already at lower secondary level – but
being aware that we are still far away from this ideal situation –, security issues

30

should play a continuous role in upper secondary education at high school level. In
this age group computer science as a discipline comes into play, with Information
security as an indispensable and meaningful part of it. Data security (measures), a
deeper understanding of the internet, cryptology and the comprehension of threat
scenarios caused by malware, hacking, modelling and simulating a local cyberwar
within the school intranet are meaningful topics that can be treated on different
complexity levels, even going far beyond a “key competence”.

In the design of content standards and guidelines with respect to information
security, it is important to ensure the distinction between digital literacy and training
IT skills on the one hand, and the teaching of computer science (Informatics) on the
other hand. Information security in itself is a very broad field encompassing nearly all
aspects, levels and layers of information technology. Very few experts in the field
have a deep technical knowledge where information security is to a certain extent a
game of cat-and-mouse when cybercriminality comes into play.

Schools cannot educate all students to be prospective specialized security experts,
but they are accountable for preparing pupils and students to be digital citizens with
appropriate knowledge and skills in digital security and safety issues.

References

1. Baumann, R. (2003). Grundlagen und Bildungsziele der Informatik in der Schule.
(Foundations and educational goals of computer science at school) In: Reiter, A. (publisher)
et al: Schulinformatik in Österreich. Erfahrungen und Beispiele aus dem Unterricht
(computer science in Austrian schools. Experiences and examples from class), Ueberreuter,
p. 57- 70. In [10]

2. Computer Science Unplugged: http://csunplugged.org/
3. CSTA: Computational Thinking in K–12 Education Teacher Resources, 2nd edition.

http://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SP-vF.pdf
CSTA Standards Task Force: K–12 Computer Science Standards, revised 2011;
http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

4. DigComp: A Framework for Developing and Understanding Digital Competence in Europe,
European Commission, Joint Research Centre, Institute for Prospective Technological
Studies, 2013 (http://ftp.jrc.es/EURdoc/JRC83167.pdf)

5. DigiKomp: http://www.digikomp.at/ (16/11/13)
6. Digital Agenda: http://ec.europa.eu/information_society/digital-agenda/documents/digital-

agendacommunication-de.pdf (2011-03-31)
7. ECDL IT-Security Modul: http://www.ecdl.org/programmes/index.jsp?p=2928&n=2944
8. From Digital Competence to Informatics Education - Structuring a Wide Field, in Digitale

Schule Österreich, OCG, Wien
9. European Cyber Security Month – Austria. http://cybersecuritymonth.eu/ecsm-

countries/austria (16/11/13)
10. Fuchs, K. & Landerer, C. (2005). Das mühsame Ringen um ein Kompetenzmodell (The

struggle over a competency model). In: CD Austria 12/2005, p. 6- 9. infobild-web.pdf
(24/7/13)

11. Gesellschaft für Informatik (2001). Empfehlungen für ein Gesamtkonzept zur
informatischen Bildung an allgemein bildenden Schulen (Recommendations for a
comprehensive approach to computer science education in general schools), Beilage LOG
IN 2. In [10]

31

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Using ICT in Informatics Education and Selected
Subjects in Primary Education for Developing of Pupils´

Abilities

Gunčaga Ján, Karasová Mária

Faculty of Education, Catholic university in Ružomberok, Ružomberok, Slovakia
{jan.guncaga, maria.karasova}@ku.sk

Abstract. In our contribution we would like to present informatics education in
primary school in Slovakia. Different kinds of educational software plays im-
portant role in primary education. We use software for painting, counting and
other subjects. Especially, we show examples in some school subjects, which
help to develop interdisciplinary connections. We present some results from our
research about using ICT in these subjects in primary level. We discuss about
positive and negative aspects of using this ICT in appropriate level for pupils’
age in primary education.

Keywords: ICT. Primary education. Informatics education. Interdisciplinary re-
lations.

1 Introduction

Modern ICT is now a normal part of the educational process, and over time reveal
new opportunities for their effective use, and problems associated with their imple-
mentation. The situation in Slovakia is slightly different in comparison with countries
such as USA, United Kingdom, and so on. We still feel the shortcomings at the actual
implementation of ICT, practice shows not only positives but also negatives. ICTs are
an excellent means to streamline the educational process, to make it exceptional,
make it more appealing to pupils and less intensive for the teacher training. But the
teacher must know how to use them so that it was not only motivational but also rea-
sonable.
Many researches in Europe are oriented to impact of ICT in primary education. For
example the study of EACEA bring statement, that “teachers find that ICT supports in
equal measure a range of learning and teaching styles, whether didactic or construc-
tivist, in passive activities (exercises, practice) and in more active learning (self-
directed learning, collaborative work)” [10].

In the Slovak Republic informatics education appeared since 2008. Informatics in
education has an important role in the lower as well as upper secondary education.
Over time, it has proved the necessarity to introduce such an object within primary
education. In addition, this course helps students develop thinking, can help them to

33

eliminate their weaknesses at the beginnig, bad habits and other problems resulting
from the use of ICT that pupils bring with them to the school environment. Students
come into daily contact with ICT and therefore it is necessary to educate them on
proper access to them. This problem occurs increasingly in children of preschool age,
that’s why in the state educational program we can find recommendations to address
this issue as early as kindergarten.

1.1 Characteristics of the subject informatics education in

Because in this subject it is necessary not only to teach students skills in working
with ICT to acquire digital competences, it is important to acquire competences of
media and information, assimilate name of this subject in primary education as infor-
matics education. Name tells us that it is essential for younger school age students to
be raised, not just educated.

Informatics education has its goals and mission. According to State Educational
Program – ISCED 1 [8] is mainly to help pupils to make them understand the basic
concepts, processes and techniques that are used when working with information.
This builds so called informatics culture, which is supposed to educate to effective
use of ICT. Informatics education in primary education thus builds a foundation for
computer science in lower secondary education.

The mission of Computer Science and Information Technology education is inter-
twined. Both items should lead students to understand basic concepts as well as the
procedures and techniques used when working with data and information flow in
computer systems. It has not only lead to efficient use of ICT but also to respect the
legal and ethical principles of their use [9]. Computer Education is compulsory from
2nd year of primary school with the time appropriation one lesson per week. Several
school heads in Slovakia it put it to the school curriculum from the first year.

Appendix of the State Educational Program – Informatics education offers a wide
range of uses of diverse educational software, because topics are built quite freely and
they are repeated every year with increasing difficulty.

The thematic areas relate to the following areas [9]:

� Information around us (set is designed to work with text, graphics, audio, video,
information, entertainment, etc..).

� Communication through ICT (set focuses on the communication possibilities of
ICT, internet work, highlight security risks and pitfalls when working with the In-
ternet, choice and selection of information).

• Procedures, problem solving, algorithmic thinking (this set focus on specific troub-
leshooting procedures through ICT, the basics of algorithmic thinking and concepts
of algorithm and program, programming).

� Principles of operation of ICT (set is devoted to the description and understanding
of ICT, working with hardware and software, etc..).

� Information society (here the students should have become familiar with examples
of the use of ICT in everyday life and realize the need for a critical and reflective

34

attitude towards available information, also we have to lead students to responsib-
le use of media).

The base topics of the informatics education curricula contains introduction to the
work with computer, the base skills and abilities in manipulation with hardware and
sotware (mainly graphics editors, text documents, working with files and folders,
developing of the algorithmical thinking, behaviour and security in the work with
internet, to create and to present different kind of presentations, etc.).
Pupils need to acquire informational and media literacy, which belong to the package
competencies in primary education. In the world of information they need to learn not
only skills and work effectively with ICT but primarily to select information and work
with them. Especially younger school age pupils can not process large amounts of
information at the appropriate level, therefore there is so important teacher's persona-
lity. The influence of media to pupils is possible to see in changes of pupils' behavio-
ur. „Changes in the process of communication, domination of the use of the media in
free time over games in the open cause essential changes in the budget of free time,
and they influence in a significant manner the behaviour of children.“ [11] This space
offers a particularly informatics education, which in addition to the acquisition of
competences mentioned, offers a wide range of developing cross-curricular activities.

1.2 Developing of the Cross-curricular relationships

As we said informatics education can significantly contribute to developing cross-
curricular activities, because within the lessons, we can not only involve the proces-
sing of other curriculum subjects, but also deepen the knowledge, habits and value.
This can be seen even on the basis of the objectives of this subject. "The aim of in-
formatic on the Primary school is familiarization with the computer and its possible
use in everyday life. Through the application appropriate to the age of pupils to acqui-
re basic skills in using the computer. In the context of Cross-curricular relationships
the pupils using a variety of applications practice their basic subject matter of mathe-
matics, Slovak and foreign language, acquire knowledge with using educational prog-
rams of natural science and geography and develop their creativity and aesthetic sen-
sitivity in different graphic editors. We need to emphasis the understanding the op-
tions that we can use in everyday activities, not to manage application control." [9]

In this subject we can contribute to the fact that we the combine knowledge into a
coherent picture. With ICT, pupils encounter in other subjects, so we have a number
of options to meet these objectives. It is necessary to choose appropriate and effective
methods, which verifies effectiveness teacher can confirm in practice and assess the
results, since the methods are chosen effectively.

"Cross-curricular relationships bring unconventional teaching methods that deve-
lop the creative abilities of the pupil, his logical thinking, independent learning and
prepares students to deal with life situations. Focus more on cross-curricular relation-
ships is therefore beneficial to the knowledge and skills that students acquire are
comprehensive." [7] It helps students to think in context, link specific issues under

35

various themes. At the same time more student meets with the application in practice
and, thus, the subject matter is not so unknown, unrelated to reality.

1.3 The need for using the ICT in primary education

The curriculum defines also competencies in the using of information and commu-
nication technologies. The pupil must [2]:

� know the using of ICT in everyday life,
� understand, that using of ICT need to have critical and considered approach to

available informations,
� responsible to use interactive media – understand the possible risks they bring,
� through the ICT realize partial tasks and outputs in the frame of project and coope-

rative learning.

We want to point out the factors associated with the use of ICT in educational pro-
cess and also the disadvantages and problems that are associated with their implemen-
tation.

According to Oldknow & Taylor [6] we can identify at least three reasons for pro-
moting the integration of ICT in primary education:

� Desirability: In terms of students, the use of ICT may stimulate their motivation
and curiosity; encourage them to develop their problem-solving strategies. In terms
of teachers, the use of ICT may improve their efficiency, release more time to ad-
dress students individually, stimulate re-thinking their approach to teaching and
understanding.

� Inevitability: Many fields of publishing have moved from printing to electronic
form. This applies to conference proceedings, reference works such as encyclopae-
dias, small-circulation textbooks, special journals, etc. At the same time, pupils are
faced with lots of information especially in the online environment and they need
to acquire skills in working with them and also develop critical thinking skills.

� Public policy: In Slovak National Curriculum ISCED 1 is defined that Informatics
education as a subject belongs to the group Mathematics and Working with Infor-
mation. And also to work with ICT, teachers should use it within any subject ac-
cording to available options the school provides and skills that teachers themselves
have when working with them.

2 Research on the use of ICT by teachers of primary education

Nowadays we can observe also based on some research as the most common use of
ICT in educational process not only the on the first stage of primary school. Some
teachers only use PowerPoint in which they prepare the presentation used in the ex-
posure part of the lesson or students can work with a computer and their action is only
unorganized surfing. We recognize that not only based on research conducted in Slo-
vakia (see in Karasová [3]; Kubiatko - Haláková [4]; Fančovičová – Prokop [1], and

36

others), as well as thanks to practical experience. Many teachers do not use the poten-
tial of ICT, which is hidden in them, because they do not have much experience or
fear their skills were inadequate , or they consider it difficult.

We conducted research, which focused on the use of ICT by teachers in primary
education. Research was conducted in the months of May-June 2013. In the research
we used selected quantitative and qualitative methods. The aim of the questionnaire in
qualitative research was to see the use of ICT by teachers (use of different kinds of
teaching techniques and software) across different subjects and stages of the learning
process. The research was conducted on a sample of 70 teachers of primary education,
particularly in the area of central Slovakia. In this paper we will shows the partial
results which was devoted to the teaching with the most used didactical technologies
and educational software by teachers during the lessons. The research was oriented
only to using ICT in selected school subjects and we would like to find the frequency
of using selected kinds of didactical technologies and educational software.

2.1 Use of ICT in different subjects

We focused on how much and if at all teachers use ICT in different subjects. Since
informatics education in Slovakia is the subject that with the use of ICT is closely
linked, it is understandable that teachers are using ICT. In the results we present gro-
up of subjects (mathematics (MAT), Slovak language (SJ), foreign language (CJ),
music education (HV) technical skills (PRAC.V.), geography education (VLAST) and
science education (PRÍR)), while comparing with informatics education in primary
education.

We used cluster analysis with the help of Chic software. The following figure re-
presents prior similarity tree.

Fig. 1. Similarity tree of the factors – different schools subjects and Infomatics education

37

Figure 1 shows that the frequency of use of ICT is very similar in the subjects of
mathematics and Slovak language (mother tongue). The great similarity is between
the geography and nature science. An interesting fact was the discovery of the simi-
larity between music and technical skills subject. In the computer science education
virtually all teachers should use ICT, making it difficult to compare the use of ICT for
informatics education with other subjects.

2.2 Use of different types of teaching techniques in teaching

Order of the different types of didactic techniques in the following table we got to
the ranking average degrees scale where for each type of didactic techniques could
returne response rates ranging from 1 to 7.

Table 1. The order of occurrence of the use of different kinds of type of didactic techniques in
teaching

Order Average Type of didactic techniques
1 6,30 PC/Notebook
2 5,36 Radio/mp3
3 4,79 Dataprojector
4 4,39 DVD player
5 4,01 Interactive whiteboard
6 2,19 Overhead projector
7 1,75 Robotic toys
8 1,65 Voting devices

The table shows that the most commonly used type of teaching techniques in the
context of ICT is computer or laptop. The least used among teachers is a voting ma-
chine. Near the top were placed devices that teachers master best while having an
affordable price. At last rungs devices that are complicate to operate and more expen-
sive, beside the overhead projector, which is already an outdated device, so its use is
gradually disappearing. Teachers use teaching techniques depends greatly on their
skills and experience to work with it.

2.3 Using various educational software in education

We focused on the frequency of use of programs in the teaching of any subject. We
present the results of a group of educational software. We used the package od sof-
tware, which is most often used in Slovakia in primary education. Alik - cheerful
Mathematics (Alik), Children's Corner 1-5 (DetskýKútik), Hot Potatoes (Hotpot),
programs to work with interactive whiteboard (InterwriteWorkspace, ACTIVstudio) ,
graphic editors (Paintbrush and Tux Paint - Paint), PowerPoint (PP), children's prog-

38

ramming languages (Baltie and Imagine) and Internet (educational portals for teachers
in Slovakia: zborovna.sk, modernyucitel.net).

The following figure represents the similarity tree of mentioned factors.

Fig. 2. Similarity tree of the factors – different types of educational software

We have discovered the similarities in using the following types of software:

� Alík – Children´s corner,
� Interwrite Workspace – ACTIV studio, connection to Hot Potatoes.

Alik is educational software, which is aimed at practicing of arithmetic for pupils
aged 6-9 years. Children's Corner is a set of programs, which is divided into 5 parts.
Each section focuses on practicing knowledge of several subjects: Mathematics, traf-
fic education, geography and Slovak language (mother tongue) for the primary stage.
Interwrite Workspace and Active Studio software is designed to work with the inter-
active whiteboard. Hot Potatoes is a program for creating quizzes and tests that tea-
chers mainly used for diagnostic. According Majherová [5] Imagine and Baltie are
children programming languages.
Context resulting from the similarity of programs or key of competences of students,
that these programs develop.

2.4 Use of ICT in different phases of educational process

We studied this aspect from the point of view of these phases of educational pro-
cess: motivational (M), expositional (E), fixating (F), applicational (A) and diagnos-
tical (D).

39

Fig. 3. Similarity tree of the factors – different phases of the educational process

We have discovered the similarities in the following pairs: motivational and diag-
nostic, exposure and fixation. Most teachers use technology in the exposure and the
fixating phase, in motivational and diagnostic phase are much less used.

3 Conclusions

Teachers most often use ICT in education in informatics education, geography ed-
ucation and natural sciences education. Teachers in primary education use less ICT in
mathematics, Slovak language, music education and technical education. We ob-
served a shift in the use of ICT in mathematics and Slovak language to geography
education and natural sciences education.

In terms of the types of teaching techniques there is a need for continuous training
of teachers in the use of various types of teaching techniques to gain the appropriate
experience and skills. It turns out that there is still a certain group of teachers who are
afraid to use ICT.

Frequent software utilities are PowerPoint presentations, as well as electronic ma-
terials available on various portals, which are accessible to teachers and created by
other teachers. PowerPoint presentations are too static and teachers don’t use more
interactive components. Still there is less frequency of use of educational software,
while these softwares have the possibility of feedback and meet the requirements
placed on them.

As teachers mainly use PowerPoint presentations and freely available Internet ma-
terials and ICT is used in the exposure and fixation phase and much less in other stag-
es of the learning process. We consider it particularly important to strengthen the

40

motivational phase, because different options of dynamic software can help to moti-
vate students to solve various problems. Facilitate the modeling of real-life situations,
which is focused on the national educational program ISCED 1.

At universities that prepare teachers for education lacks implementation of these
changes in relevant bachelor's and master's programs for primary education teachers.
International experiences, which may be helpful for Slovak universities, are valuable.

Practicing teachers would need continuing education focused more on methodolog-
ical aspect of the use of ICT in their subjects with appropriate methodology adapted
to the subject. The use of ICT in terms of pupil, brings specific psycho-hygienic prob-
lems that teachers should take into account in their practice. Then it is possible to
achieve a balanced and effective use of ICT in the educational process.

References
1. Fančovičová, J., Prokop, P.: Postoje žiakov vybraných základných škôl k informačno-

komunikačným technológiám. In: E-pedagogium. vol. 1, pp. 16 – 27. Univerzita Pa-
lackého, Olomouc (2006), http://www.upol.cz/fileadmin/user_upload/PdF/e-
pedagogium/e-ped_2-2006.pdf

2. Jablonský, T.: Cooperative Learning in School Education. FALL, Kraków (2006)
3. Karasová, M.: Využívanie informačných a komunikačných technológií v súčasnej

katechéze. VERBUM, Ružomberok (2012)
4. Kubiatko, M., Haláková, Z.: Používanie IKT vo vyučovaní biológie. In: Biologie – Che-

mie – Zeměpis. vol. 2, pp. 72 – 74. (2007),
http://www.kubiatko.eu/clanky_pdf/pouzivanie_ikt_vo_vyucovani_biologie.pdf

5. Majherová, J.: Use of program Baltie 4 C# in teaching of informatics. In: Bednarczyk, H.,
Sałata, E. (eds.) DIDMATTECH, pp. 322-326, Technical University of Radom, Radom
(2010)

6. Oldknow, A., Taylor, R.: Teaching Mathematics using Information and Communications
Technology. Continuum, London – New York (2003)

7. Pálinkásová, I.: Využitie IKT v medzipredmetových vzťahoch. (2007),
www.cenast.sk/files/documents/2007/523/palinkasova.pdf

8. Štátny vzdelávací program. ISCED 1 – primárne vzdelávanie. Bratislava (2008),
www.statpedu.sk/files/documents/svp/.../isced1/isced1_spu_uprava.pdf

9. Štátny vzdelávací program. Informatická výchova – príloha ISCED 1 – primárne vzde-
lávanie. Bratislava (2008),
www.statpedu.sk/files/.../svp/.../isced1/.../informaticka_vychova_isced1.pdf

10. Balanskat, A.: Study of the impact of technology in primary schools. Synthesis Report.
EACEA, Brussel (2009), eacea.ec.europa.eu/...impact...primary_school/02_sy...

11. Juszczyk, S.: Media influence on children and adolescents. In: The New Educational Re-
view. vol. 3, pp. 93 – 110. (2004)

41

Emerging Technologies and Tools
for Informatics

An early evaluation of the HiPPY tool usage:
the France-IOI case study

Mahdi Miled1, Christophe Reffay2, Mona Laroussi3

1École Normale Supérieure de Cachan, France
mahdi.miled@ens-cachan.fr

2Université de Franche-Comté, France
christophe.reffay@univ-fcomte.fr

3Institut National des Sciences Appliquées et de Technologie, Tunisia
mona.laroussi@insat.rnu.tn

Abstract. We present in this paper early results of a large-scale experiment about the use of a
prototype called HiPPY (an epistemic HyPermedia to learn PYthon language). This tool was
integrated in the France-IOI platform to study solving strategies mainly in high school in
France. Conceptually, it is based on a fine grain learning resources called “epistemes”, on a
dynamic navigation system and on an individualized epistemic diagnosis. In addition of traces
collected from the interaction with the system, we conducted a questionnaire dedicated to
learners to judge the satisfaction and the utility of the overall system. We identified eventual
strategies in relation with the solving process. We propose further to combine computed traces
and declarative ones mainly got from a questionnaire to verify and validate several hypothesis
taking into account privacy issues. According to the questionnaire, the emerging profile is
widely related to beginners in programming.

Keywords: adaptive hypermedia, traces, trajectories, learning programming, Python.

1 Introduction, context and research questions

Appeared in autumn 2012, a new elective course dedicated to pupils in high schools
in France also called ISN (“Informatique et Sciences du Numérique”, i.e.: “Informat-
ics and Digital Sciences”) brought several changes to promote a renewal in teaching
informatics in France [15]. Supported by the French association training International
Olympiads in Informatics (IOI) challengers, the France-IOI platform offers a hundred
exercises covering the practical part of the ISN topics. These exercises are available
in seven programming languages. Python seems to be a good candidate to be retained
as a language taught in this introductory course [3] [10]. We defined a graph of fine
grain programming concepts (named epistemes) for Python in [13] to support this set
of exercises. Distant users solve their exercises and alternatively navigate through the
HiPPY epistemic graph to find the needed concepts to solve an exercise. Our research
questions are essentially related to (1) identifying solving problems trends from data
analysis, (2) assessing the integration of the HiPPY prototype into the France-IOI

45

platform and (3) assessing its usability and its utility from a questionnaire. We present
in the first part the HiPPY tool, its conceptual foundations, its main features and its
use as a part of the France-IOI platform. We describe, in the second one, the experi-
mental stage including collecting data associated with interaction traces and a ques-
tionnaire. We also give first results got from the experiment. We conclude with re-
search perspectives and future directions.

2 The HiPPY prototype

A lot of research dealt with adaptive hypermedia regarding techniques, methods
frameworks and environments [1]. Several environments were also devoted to learn-
ing programming [7] [2]. Various other environments allow evaluating learners and
making correlations between usage and performance sometimes in following learners
approaches to analyse usage [4]. Kumar system in C++ [8] and Logic-ITA [11] are
case illustrations. Other situations like [9] seek to determine what types of knowledge
are exploited to solve a given problem. As an adaptive hypermedia, the epistemic
HyPermedia to learn PYthon Language (HiPPY) has three major components: a graph
of epistemes [12], a dynamic navigation and an individualized epistemic diagnosis. A
preliminary form of HiPPY was already introduced and detailed in [13] mainly about
its graph of epistemes that represents a set of fine grain concepts. The general dynam-
ic navigation tool in the HiPPY prototype offers two approaches:

─ A task-oriented approach: At the exercise level, the provided graph contains only
helpful epistemes to solve the current exercise or task.

─ A generic approach: At the chapter level, the student accesses the graph enclosing
epistemes of a given topic, i.e.: useful epistemes to solve all exercises of a given
chapter. At the course level, the whole graph is also available.

For both of these approaches, the obtained graph presents epistemes as nodes in vari-
ous forms according to the user familiarity with it, in order to visually differentiate:
unvisited and non validated epistemes, those visited but not yet validated, and vali-
dated ones (but not necessarily visited). Currently, an episteme is validated once a
related exercise has been successfully submitted. To navigate the graph (see Fig. 1), a
simple click allows clear view and displays only the dependencies of the selected
episteme. A double-click opens the content of the episteme. Students may also open
epistemes thanks to links to ancestors (pre-requisite) directly in the text content.
As a result, the visualization of this graph is intended to give the user an individual-
ized epistemic diagnosis, especially useful for users who diverge from the order of the
suggested sequence of exercises (see part 3.2).

46

Fig. 1. A task-oriented sub-graph of epistemes in the HiPPY tool

3 Experiment

A pre-stage (from April 2013 to June 2013) was conducted to test traces collecting
process and interaction with the system. The reported experiment really started in
September 2013 that coincided with the new school year. We explain in this section
collecting, modeling and analyzing traces processes. We expose afterwards early
results both from traces analysis and from the questionnaire. We finally attempt to
combine the results obtained from both of these data collection and analysis.

3.1 Collecting and modelling traces

Thanks to primary traces collected in SQL tables, we were able to compose them with
different techniques of selection, filtering or composition to elaborate more useful and
significant traces also called modelled traces [5]. These traces are intended to support
the 3-level trajectory defined as follows:

� The macro-level trajectory (Fig. 2) is the ordered sequence of successfully solved
exercises for a specific user in a given period and for a given set of exercises. The
white exercises are unopened exercises, those that have been opened (but not yet

47

solved) contain small slashes and those that contain dots are solved. The solid ar-
rows denote the sequential order suggested by the platform. In this example, the
exercises E1, E2, E3 are part of a particular topic (or chapter involving a set of epis-
temes). E3, Ek and Et obey to the same objective. This objective can partially cover
several topics. Macro- trajectory of learner L1 would be the sequence (E1, Ek ,Et
and En).

Fig. 2. Ordered set of exercises, themes, objectives and example of a macro-trajectory for the
learner L1

� The micro-level trajectory (Fig. 3) is the ordered sequence of events (reading a
task or an exercise, associated concepts, submission etc.) for a specific user be-
tween the (first) visit of the exercise description (i.e.: task definition associated
with the read event) and the first submission of a correct solution.

Fig. 3. Micro-trajectory structure

� The epistemic-level trajectory (Fig. 4) which belongs to a task (or an exercise)
concerns the list of epistemes used at a wide sense according the different events:
epiGraphClick (for a navigation purpose), epiGraphDoubleclick (opening from the
epistemic graph), epiSeen (opening episteme contents) and epiClick (opening from
prerequisites list).

T0 = Date of a statement
opening

T1 = Date of the first successful
submission

Reading Hints Associated
concepts

Submission T=T0 T=T1

E1
E3

E2

Ek

En-1
En

Et

Theme

Theme

Objective
T1(E1, L1) = 1

T1(Et, L1) = 5

T1(Ek, L1) = 6

T1(En, L1) = 9

48

Fig. 4. Epistemic trajectory components

This epistemic trajectory matches the “Associated concepts” tab. It was necessarily
incorporated when we first integrated the “Associated concepts” tab in the France-IOI
platform.

3.2 Revisiting previous statistics of France-IOI platform

Some traces of the France-IOI platform (before inclusion of the graph of epistemes)
already allowed us to analyze some trends in the macro- trajectories. Global statistics
indicate that about 865 registered users since September 2012 and who chose Python
language, 721 validated at least one exercise, 438 have validated at least six and 220
have validated at least sixteen (out of 106). The first two chapters (as a thematic list of
exercises) include sixteen exercises. We can notice that the 220 having completed at
least sixteen, 75 have strictly followed the prescribed order without avoiding any
exercise (34 %). 66 jumped or inverted between 1 and 4 exercise (30%). The remain-
ing 79 skipped or reversed five or more (36%). These initial data show a very sequen-
tial presentation giving no indication of the dependencies between the concepts. De-
spite this fact, two-thirds of users of the France- IOI platform having completed at
least 16 exercises diverged from the suggested sequence. We think they could (1)
directly benefit from associated concepts related to exercises (made in advance) and
(2) better perceive the concepts they would not validated.

3.3 Traces results and discussion

We present here some results from traces analysis and questionnaire answers. We
could observe that the first effective results from the experiment which began in Sep-
tember 2013 confirm the partial ones retrieved during the pre-experiment.

Early traces analysis.
The trace analysis included two stages: a pre-experiment which started in April 4th
2013 (high school course) and an experiment which started in September 1st 2013

49

(collected traces are up to October 18th). We’ll mainly present results about micro and
epistemic trajectories.

Pre-experiment results.
Number of learners who used the "Related concepts" tab reached 200 users till May
17th 2013 (it was about 32 users until April 12th, 80 until April 24th). Let us see first
epistemic trajectory indications. The Fig. 5 is an example of that trajectory. The first
column is the user ID (21372), the second is the episteme ID, the third is the time
stamp, the fourth is the event associated with the episteme being used at the indicated
time-stamp. As for the fifth, it distinguishes between task oriented and generic ap-
proach. The last column is the task (or exercise) ID. 62 epistemes were used (out of
69). The episteme “print” (“Afficher”) is the most used episteme. From April 4th to
April 12th 2013, out of 567 instances (of epistemic trajectory) 530 were task-oriented,
37 were Non-oriented task. Out of these 567 instances, 299 were related to
epiGraphClick, 136 to epiSeen, 78 to epiClick and 54 to the epiGraphDoubleClick
event.

Fig. 5. An excerpt of an epistemic trajectory

We tried also to get a snapshot to measure durations into the different tabs. According
to the Fig. 6, we have three different users ID (21134, 21867 and 21909) for different
tasks (1877, 1878, 1880 and 1881).

Fig. 6. Elapsed time on different tabs for three users

50

These tasks are the first in the France-IOI order. It may explain why the duration is
relatively low. The maximum duration (about 7 minutes) in this excerpt is for the state
“Submitted” that is actually included in the TabEditor. Observing time stays into the
different tabs may be insufficient, that’s why we decided to analyze tabs order in the
purpose to recognize relevant patterns linked to the TabEpistemes. Here is a result
(Fig. 7) of a limited analysis. Relevant patterns are the following: (*, TabEpistemes,
TabCorrection) and (*, TabCorrection, TabEpistemes). This obviously shows two
potential uses or strategies involving TabEpistemes:

─ as a resolution support (before a submission): this is way to get more information
about necessary concepts to the task. This type of use is related to the pattern (*,
TabEpistemes, TabCorrection);

─ and as a consolidation support (after a submission): this is especially done to
verify which concepts were used after a successful submission. This corresponds
more to (*, TabCorrection, TabEpistemes).

Fig. 7. Recurrent patterns in micro-trajectories

Even though we got 7/29 versus 3/29 patterns, we cannot conclude so far in terms of
proportion to say whether it is more used as a resolution support or as a consolidation
support.

51

Some experiment results.
Total distinct users who used at least one episteme are 858 (between September 1st
and October 18th 2013). Total registered users during the same period were 2762.
2105 selected Python language. 1018 users solved at least 10 exercises (or tasks). In
the experiment, 8901 instances (90.94%) were task oriented approach, 887 were be-
longing to the generic approach, confirming that the graph of epistemes was widely
used in a task context. The most visited episteme is: « Afficher » (print, id=8). This is
also a confirmation that we saw in the pre-experiment stage. In the experiment, 66
epistemes out of 69 were used. The results were confirmed with a more significative
value in the experiment (out of 9788 instances): 5549 Epigraphclick (56.69%), 1181
Epiclick, 2085 Episeen and 973 Epigraphdoubleclick.

3.4 Questionnaire results and discussion

A questionnaire was given to users to evaluate and give directions to improve the
current HiPPY prototype. This questionnaire was also useful to validate some hypoth-
esis about the users’ profiles (beginner, intermediate or advanced), getting infor-
mation about the practice of programming not necessary on Python language, and
identifying the proportion of users belonging to ISN courses. Technically, the ques-
tionnaire was a google document where each user can answer online. We put the con-
dition that a user must have solved at least 10 problems. Here are some of the ques-
tions asked.

Identifying users demographic profile and programming profile
The users were asked to give their gender, age (optional) and last class attended or got
diploma. We also asked if the users belong to an ISN group. Information about the
programming profile were requested: “Which is your programming level before you
join the France-IOI platform?” the different possibilities were: “I have already written
more than 10000 lines of code in one language, I have made some tries in at least two
programming languages, I have good notions but no practice” and, “I discover pro-
gramming for the first time”.

Evaluating usability, effectiveness and utility
Here are respectively questions to inquire usability satisfaction and effectiveness of
the Individualized Epistemic Diagnosis (IED): “How do you find the navigation sys-
tem? How do you find the effectiveness of the IED?” The user could choose from
four alternatives (unsatisfactory, somewhat satisfactory, satisfactory and very satisfac-
tory). As for utility of the “associated concepts” tab, the user ought to select an an-
swer from “not useful, sometimes useful, useful” and “very useful”.

Explaining some users’ actions/preferences
In this section, the first question was “Which is the element that you appreciate the
most in the “Associated concepts” tab”. Possible answers were: Animation and nodes
centering, displaying of assimilated concepts, reminders about a concept or prerequi-

52

site concepts displaying for an exercise. The second question was “Why do you con-
sult “Associated concepts” tab?” Possible reasons were: to verify which concept is
linked to another, to see assimilated concepts, to see exercise prerequisites, to see
reminders about a concept or other reason.

Some questionnaire results
We collected 121 responses (from November 5th until December 4th 2013). Flat data
give 25% female users. 52% coded less than 10 code lines, 21% between 10 and 100.
41% are discovering programming for the first time and 22% have good knowledge
but not practice. 42% have begun programming in 2013. 38% of total users belong to
an ISN group. All These elements denote a dominating beginner profile in program-
ming. Concerning dynamic navigation satisfaction (Fig. 8), 50% are satisfied (includ-
ing very satisfied). This percentage is higher when it concerns male users not belong-
ing to ISN groups (n=58) the satisfactory rate reaches 58% (among 10% very satis-
fied).

Fig. 8. Evaluating the dynamic navigation satisfaction (n=121)

As for the individualized epistemic diagnosis (Fig. 9), 64% find it satisfying (includ-
ing very satisfying). For male users not belonging to ISN groups (n=58), the individu-
alized epistemic diagnosis is very satisfactory (9%), satisfactory (62%), somewhat
satisfactory (22%) and unsatisfactory (7%). Out of 121 users, 33% find the HiPPY
tool useful, 11% very useful, 35% sometimes useful and 21% not useful, but at the
opposite with other results, here users belonging to ISN groups find it more useful
than others, (42% useful and 12% very useful). Results concerning utility show us
that 44% find it useful, so we decide to investigate more and try to make a kind of a
cross validation of these declarative results.

53

Fig. 9. Evaluating the individualized epistemic diagnosis effectiveness (n=121)

Combining both partial traces and questionnaire results.

Assuming that if a user find useful the “associated concepts” tab, we tried to verify he
had more chance to get more access to this tab. It is partially true because, it could be
an explanation of a harder task which demands more reminders about the concepts
studied to solve the exercise. We defined a new ratio-metric called “Epistemes Tab
Usage Rate” (ETUR) which concerns all tasks without distinction for each user as
follows:

 =

We obtained a graph (Fig. 10) mapping the declarative results (about the utility of the
Associated concepts tab) and the effective ones (ETUR ratio-metric).

Fig. 10. Relation between declarative utility and effective usage

The horizontal axis represents anonymized users, the vertical axis concerns the asso-
ciated ETUR values. What we expected was to get highest values of ETUR with very
useful markers. It wasn’t the case here. Highest values are clearly for “useful” marker

54

and “sometimes useful” one. Other contradictory results give ETUR high values
(0.09) for useless marker. Here are the different values (Table 1) of the Usage
Epistemes Tab Frequency (UETF), the Usage of All Tabs Frequency (UATF) and the
Epistemes Tab Usage Rate (ETUR).

Table 1. Average, deviation, maximum and minimum values of UETF, UATF and ETUR

UETF UATF ETUR

Average 13.5 299.5 0.048028
Deviation 2.12132 129.400541 0.013668
Maximum 210 3218 0.101796
Minimum 1 181 0.003023

Even though these results give some contradictory views, it would be interesting to
investigate more to see for example specific durations. This aspect wasn’t taken into
account here. We could also see if these ETUR values are more significant with
micro-trajectories and declarative utility rate combination.

4 Conclusion

We presented results concerning the integration of an epistemic HyPermedia to learn
PYthon language on the France-IOI platform. This HiPPY tool works in conjunction
with the France-IOI exercises list. It relies on a graph of epistemes, on a dynamic
navigation and on an individualized epistemic diagnosis. Usage analysis results
through collected traces (such as task oriented approach, graph navigation events) in
the pre-experiment were validated and confirmed in the experiment. Thanks to certain
frequent patterns, we identified two potential uses or strategies involving the
TabEpistemes: as a resolution support and as a consolidation support. We also re-
trieved useful information from the questionnaire. The dominant profile of users is
related to beginners in programming. 64% of the users (n=121) found the individual-
ized epistemic diagnosis for instance satisfactory and very satisfactory. We tried to
combine partial traces results and declarative results about the utility. The ETUR
values were discordant with what we expected to get. Future perspectives will include
a more specific characterization of strategies, using data mining techniques to discov-
er from effective traces and declarative data more elaborated models in relation with
clustering, and association rules.

Acknowledgments.
We would like to thank the France-IOI association for allowing us to share and feder-
ate learning resources.

55

References

1. Brusilovsky, P. (1999). Adaptive and intelligent technologies for web-based eduction. KI,
13(4), 19 25.

2. Brusilovsky, P., & Sosnovsky, S. (2005). Individualized exercises for self-assessment of
programming knowledge: An evaluation of QuizPACK. Journal on Educational Resources
in Computing (JERIC), 5(3), 6.

3. https://www.coursera.org/course/interactivepython. An introduction to Interactive Pro-
gramming in Python | Coursera. Retrieved January 28th 2014.

4. Delozanne, E., Le Calvez, F., Merceron, A., & Labat, J.-M. (2007). Design Patterns en
EIAH: vers un langage de Patterns pour l’évaluation des apprenants. Revue des Sciences et
Technologies de l’Information et de la Communication pour l’Education et la Formation
(STICEF), 14.

5. Djouad, T., Mille, A., Reffay, C., & Benmohammed, M. (2010). A New Approach Based on
Modelled Traces to Compute Collaborative and Individual Indicators Human Interaction (p.
53 54). IEEE.

6. Dominguez, A. K., Yacef, K., & Curran, J. R. (2010). Data Mining for Individualised Hints
in e-Learning. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.6422&rep=rep1&type=pdf

7. Hsiao, I.-H., Brusilovsky, P., & Sosnovsky, S. (2008). Web-based parameterized questions
for object-oriented programming. In World Conference on E-Learning in Corporate, Gov-
ernment, Healthcare, and Higher Education (Vol. 2008, p. 3728 3735).

8. Kumar, A. (2005). Usage Analysis in Tutors for C++ Programming. In Proceedings ofÇ Us-
age Analysis in Learning Systems È workshop (p. 57 64).

9. Labat, J.-M., Pastré, P., Parage, P., Futtersack, M., Richard, J.-F., & Sander, E. (2007). Ana-
lyser les stratégies de résolution de problèmes en situation naturelle grâce à un simulateur: le
cas des régleurs de plasturgie. In Actes de la conférence EIAH 2007.

10. http://mechanicalmooc.org/. A gentle Introduction to Python – Mechanical MOOC. Re-
trieved January 28th 2014.

11. Merceron, A., & Yacef, K. (2004). Mining student data captured from a web-based tutoring
tool: Initial exploration and results. Journal of Interactive Learning Research, 15(4), 319
346.

12. Ortiz, P. (2012). Hypermédia adaptatif à épistèmes pour l’apprentissage des langages de
programmation. RJC EIAH’2012, 99.

13. Reffay, C., Miled, M., Ortiz, P., & Février, L. (2013). An Epistemic Hypermedia to Learn
Python as a Resource for an Introductory Course for Algorithmics in France. In Local Pro-
ceedings of the 6th International Conference on Informatics in Schools; Situation, Evolution
and Perspectives. ISSEP 2013, Oldenburg, Germany. (p. 111). Retrieved from
http://opus.kobv.de/ubp/volltexte/2013/6368/pdf/cid06.pdf#page=111

14. Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art.
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
40(6), 601 618.

15. Tort, F., & Drot-Delange, B. (2013). Informatics in the french secondary curricula: recent
moves and perspectives. In Informatics in Schools. Sustainable Informatics Education for
Pupils of all Ages (p. 31 42). Springer.

56

A Formula is an Orange Juice Squeezer -
Understanding Spreadsheet Calculation

Through Metaphors
Michael Weigend

Institut für Didaktik der Mathematik und der Informatik,
Fliednerstr. 21, 48149 Münster, Germany
michael.weigend@uni-muenster.de

Abstract. Manuals and class room activities related to spreadsheet calculation are
often procedural (learning by doing). However, deeper understanding requires (de-
clarative) knowledge of fundamental informatics concepts, including relative and
absolute reference, formula (expression), format versus value, input versus output
data. This paper discusses how to use metaphors from everyday life to elaborate
spreadsheet related concepts and presents some findings from two pencil-and-paper
exercises.

Keywords. Spreadsheet calculation, informatics education, co-operative learn-
ing, metaphors, concept maps

1 Procedural and Declarative Knowledge About Spreadsheet
Calculation

Spreadsheet calculation (first implementation 1962 on an IBM 1130) is one of the
first and most successful digital tools. Today, the ability to use software like Mi-
crosoft Excel or OpenOffice Calc for numerical calculation and modeling is regarded
to be a basic informatics competence. Module 4 and AM4 of the European Computer
Driver’s License (ECDL) are dedicated to spreadsheet calculation (www.ecdl.com).
Some educators regard spreadsheet calculation as a “quick alternative” to a program-
ming language for introducing some informatics concepts [1]. In math and science
education spreadsheet calculation is often used as a tool supporting constructivist
learning [1].

The CSTA curriculum mentions spreadsheet calculation just as an example of a
productivity technology tool (beside word processing and presentation), which is
relevant in the strand “collaboration” [2]. The German “Educational Standards for
Computer Science in Lower Secondary Education” [3] suggest using spreadsheet
calculation as an example of a software system that students can analyze adopting
computer science concepts like data processing and object oriented thinking. For ex-
amples, tables, cells, rows and columns can be seen as objects with attributes and
methods.

Often people learn spreadsheet calculation in a procedural way (“learning by do-
ing”) based on media, a collaborative social environment and self-directed experi-

57

menting with the system. In a media-based learning style the students often follow
step-by-step instructions in videos or text books. Such tutorials explain what to do in
order to reach a certain effect.

Exercises may be completely embedded (via comments) in spreadsheets like in
figure 1. The learner edits a half baked spreadsheet, which is completely self-
explanatory.

Fig. 1. Spreadsheet with embedded instructions

Spreadsheets like this can be found in the award-winning website Easy4me
(http://www.easy4me.info/open-office/modul-4/). This type of activity
is even more procedure-oriented than conventional step-by-step instructions, since
there is less verbalization.

Modern user-friendly spreadsheet systems like OpenOffice Calc support learning
by doing. The user just starts and finds out the system functionality by exploring and
experimenting. Such systems adopt affordances [4] and multiple representations to
enable humans to use it “intuitively” without (much) specific technical knowledge.
For example a dialog box for formatting numbers contains labeled checkboxes and
entry fields for specifying the number of decimals, and additionally displayed exam-
ples of different formats. The user may choose an example and sees the abstract speci-
fication or vice versa.
Spreadsheets may contain undetected errors. Brown and Gould [5] studied spread-
sheets made by experienced users. They found that 44% of the investigated spread-
sheets were not correct despite the programmers’ reports to be quite confident that
they were error free. Kruck (2006) found evidence that certain practices help to in-
crease the accuracy of spreadsheets (cited in [6], p. 135). Successful aids include

� “Use an organized layout to isolate data and computation areas.“
� “Use descriptive labels.”
� “Repeat the input data near the output.”
� “Relative and absolute cell addressing should be used where appropriate.”
� “Formulas should contain only cell references.”

To be able to understand and follow these rules, students need explicit declarative
knowledge about the underlying computational concepts of spreadsheet calculation.

58

Let me now shortly mention eight concepts that are elaborated in two class room ac-
tivities which I am going to present later in this contribution.

� Cell. A spreadsheet is a two-dimensional grid consisting of cells. Each cell can be
an input and output device for data. It may contain explicit data or a formula. A
cell is identified by a cell reference like A2, or A2.

� Formula. A formula is an expression made of explicit data (numbers, strings), cell
references, operators and function calls. Since formulas are evaluated immediately
by the system they can be considered as a mechanism that calculates output data
from input data.

� Copying. A spreadsheet is mostly constructed by copying. The user defines just a
few basic formulas explicitly – say the first row of a table – and then copies them
to many more cells. Formulas with relative references change when copied. Thus
copying in spreadsheet calculation is different from the everyday concept of copy-
ing (creating identical instances).

� An absolute reference like A2 addresses one unique cell of the spreadsheet. This
implies two important facets of meaning: It never changes when copied and it iden-
tifies unambiguously one object.

� A relative cell reference like A2 refers to a cell at a position relative to the cell,
where it is stored.

� Format. The format of data is an attribute of the displaying cell. Numbers look
different depending on the data format that has been defined. For example the
strings 10%, 0.1 and 0.9951234 may represent the same numerical object.

� Output data are produced by formulas. Therefore cells with formulas are meant to
be output devices.

� Input data are meant to be processed by formulas. Some cells are used as input
devices. The user is supposed to put data into these cells.

� Access control. A cell can be protected from changes by “locking”. This way it is
restricted to the function of an output device. In fact the protected object is the
formula stored in the cell.

Some of these items may be considered as threshold concepts, “opening up a new
and previously inaccessible way of thinking about something” [7]. For example it is
possible to construct correct spreadsheets without understanding the principle of rela-
tive cell referencing. Some users accept the change of a formula during copying just
as “part of the magic” of a user friendly system. Like an autocorrecting text processor,
the spreadsheet system “guesses” or “figures out” from previous behavior the user’s
intentions and does the right thing. This thinking might work to a certain degree, since
spreadsheets often have a similar structure (table with a header). But ignorance of the
difference between relative and absolute references is a threshold, preventing the user
to design and understand tables with formulas that contain an absolute reference to
one unique cell with a global constant.

Explicit declarative knowledge – beyond partly unconscious procedural knowledge
(“implicit knowledge”) – is necessary to be able to avoid and detect mistakes, to learn
new features, to create new table designs and to communicate with others about

59

spreadsheet design. Such knowledge can be represented by regular text (like in this
section), but it can also be explicated and visualized by concept maps and metaphors.

2 Concept Mapping and Metaphors

Concept mapping is based on Ausubels learning theory and was developed in the
early 1970ies by Novak [8]. In this section I discuss similarities and differences be-
tween concept mapping and the class room activity used in this study. The idea of
concept mapping is to construct individual “organized knowledge”. In concept map-
ping a person designs a directed graph consisting of rectangular blocks (vertices)
representing concepts and arrows between them. The arrows are annotated with a
label indicating a relation between the concepts. The combination of two concepts and
a relation between them is called a proposition or semantic unit. It is recommended to
use a focus question that addresses in some way the knowledge domain you want to
map. It might be a concrete problem you want to solve. The focus question represents
a reason for constructing the concept map. Consider this focus question: “How do you
use formulas and locks in spreadsheet calculation?” Figure 2 depicts a corresponding
concept map, which was used in one of the activities. This structure represents a co-
herent system of propositions like “A lock protects a formula” or “A formula yields
output datal”.

Fig. 2. Concept map used in activity LOCKS (see figure 3)

There are many ways to use concept mapping in classroom activities.

� The students create a concept map to a given focus question by themselves.
� The students get a list of concepts and construct a concept map by adding relations.

A variant of this approach is to use card with concept-labels which can be arranged
on the desk top (structure-laying technique [9]).

� The students finalize an incomplete concept map and add missing elements.

The general idea is to evoke individual elaboration and – in a collaborative envi-
ronment – give a reason to discuss declarative knowledge, hopefully leading to a bet-
ter understanding. Additionally concept mapping can be used for “diagnosis” since

60

they indicate students’ misconceptions. Based on the analysis of six meta-studies
(investigating altogether 287 studies and describing 332 effects) John Hattie [10]
concludes that concept mapping has a visible positive effect on learning (effect size
d=0.57), especially when it is performed at the end of a learning sequence. The stu-
dents need familiarity with the new field of knowledge.

The activities of this study follow the general idea of concept mapping as a way to
elaborate and reflect declarative knowledge, but they do not imply the active con-
struction of relations between concepts.

A precondition for successful concept mapping is that the creator and reader com-
prehend the individual concepts (boxes) within the structure (see [11]). The structure
itself may explain a few semantic aspects of the concepts via relations, but this is not
enough. For example the concept of copying a formula containing relative and abso-
lute cell references is very specific and is not completely explained in the example
concept map. This leads to another problem: The labels which identify concepts must
be understood. A certain word or phrase – used as label – may refer to different con-
cepts.

To improve the expressive power, a concepts map may contain “specific examples
of events or objects that help to clarify the meaning of a given concept” [8, p.2]. The-
se are put in ovals instead of rectangles to point out that these units are not labels for
concepts but just alternative representations of concepts already included in the graph.
The class room activities of this study focus on this feature of concepts maps. The
students had to assign images from everyday life to concepts or propositions. The
depicted objects were supposed to be a conceptual metaphors related to certain facets
of spreadsheet calculation. Ingredients for cookie dough for example are a metaphor
for input data, being processed by the cook. A cookie taken from the oven can be seen
as a metaphor for output data, the result of some processing.

According to Lakoff and Nunes [11, 12] a conceptual metaphor is a transfer of
knowledge from a familiar source domain to a still unfamiliar target domain. Concep-
tual metaphors are “vehicles” carrying the learners to new knowledge beyond their
intellectual horizons. Using metaphors like the number line has a long tradition in
math teaching. In informatics metaphors like stack and queue are used for data struc-
tures. Software development often starts with a project metaphor, describing the fun-
damental idea of a new software system in a holistic way. These examples illustrate
that the usage of metaphors is a part of computer science knowledge.

Additionally to facilitating thinking, metaphors add color to computer science. Im-
ages are rich and they can evoke emotions and personal involvement. They may be
designed carefully for different age groups, genders and subcultures. Elaborating
metaphorical illustrations implies constructing additional meaning beyond the formal-
isms. For example, connecting an image depicting cookies taken from the oven to the
concept of output data, which has been produced by a formula, highlights semantic
facets like these:

� Output is something that is consumed by the user.
� Output data has a higher value than the input data.

61

� The quality of the output data depends on the quality of the input data and the for-
mula processing the input.

3 Two Classroom Activities

In this study, students from a computer science class (grade 9, age 15-16) at a
comprehensive school in Germany were asked to do two pencil-and-paper exercises,
which I call BASICS and LOCKS.

BASICS focused on basic concepts: absolute and relative reference, formula, value
and format of numbers and copying. LOCKS was about protecting tables. A cell in
table may serve either as input or as output device. The user of a spreadsheet is sup-
posed to write numbers in certain cells (input). Other cells contain formulas that pro-
cess the input and yield output which is displayed in the cell. Open access is a source
of possible errors since the user may destroy a formula accidently by overwriting it.
To lock a cell means to make it an output device and to protect the formula.

These two activities took place at different days within a sequence of hands-on les-
sons on spreadsheet calculation. Each activity consisted of three sessions: USE,
EXPLAIN, EVALUATE.

The USE session focused on procedural knowledge. The students were asked to
describe how to perform operations like changing the format of a cell display or pro-
tecting cells by picking words from a list and filling them in a cloze text. In other
tasks they had to specify how cells look like, when a user has performed certain oper-
ations like choosing a format or copying a formula from one cell to another. The tasks
included screenshots from the OpenOffice Calc user interface. It was not required to
explain any concepts.

The EXPLAIN sessions focused on declarative knowledge. The participants were
asked to explain concepts by associating images to them. The EXPLAIN session of
BASICS was based on the first working sheet in figure 3. On the left hand side there
were captioned images of nine objects or scenes from everyday life (like for example
three persons walking in a row), On the right hand side there were descriptions of five
concepts relevant in spreadsheet calculation. Each description consisted of a short
text and an example. It can be assumed that the students were familiar with these
concepts and had adopted them in several projects. The participants had to decide for
each situation on the left hands side, to which of the concepts it would correspond
most.

62

Fig. 3. Working sheets for EXPLAIN sessions

The EXPLAIN session of the second activity LOCKS was slightly different (see
figure 3, right hand side). The working sheet depicts a concept map surrounded by
captioned images, representing possible metaphors for the concepts in the boxes of
the middle. The students were allowed to cooperate but had to fill their working sheet
individually. In fact, a lot of discussion took place during this phase. Furthermore, the
students were encouraged to design an image visualizing a concept on their own.

The students performed USE and EXPLAIN in different orders. Half of them start-
ed with USE and the others started with the EXPLAIN session. They had (almost) no
opportunity to communicate when they solved the tasks in the two USE sessions.

The third part EVALUATE was a classroom discussion about the concepts and
metaphors, which took place in the next lesson, a couple of days later. The students
saw a presentation. Each slide depicted one of the images and one of the concepts for
which it was supposed to be a metaphor. Then everybody got the opportunity to sug-
gest additional interpretations. After a short discussion a written statement was
shown, which explained in what way this image could be regarded as a metaphor. The
students got evaluation cards and gave a mark from A to F to each metaphor indicat-
ing how far they would accept the reasoning in the explaining statement (plausibility).
They gave another mark from A to F for the usability of this illustration for under-
standing the associated concept. Figure 4 shows two translated examples of these
explaining slides.

63

Fig. 4. Two slides with explanations of metaphors that were to be judged by students

4 Findings

In BASICS the students recognized an average of only 1.7 (out of 9) of the intend-
ed metaphors (“hits”) and 5.1 (out of 9) in LOCKS. The difference may be due to the
opportunity for collaboration and/or more obvious metaphors in LOCKS. Of course,
there is more than one reasonable interpretation for each image. For example a stu-
dent reported that he considered the line of people (image 4, left hand side) to be a
metaphor for copying a formula, since everybody copies the behavior of the first per-
son in the line. Still, the number of hits reflects the ability to find metaphors to some
extent.

In BASICS, students, who started with USE, found significantly more intended
metaphors in the EXPLAIN part (one-sided exact Fisher’s test) than those who started
with EXPLAIN. This was not the case in the LOCKS activity.

Table 1 comprises some data on the students’ selections and judgments of concep-
tual metaphors during the EXPLAIN sessions of BASICS. They are described in the
style suggested by Lakoff and Nunez [11] by expressions A is B. A is an informatics
concept related to spreadsheet calculation (target domain) and B is an object from
everyday life (source domain).

For each depicted object B from everyday life students had to choose a correspond-
ing spreadsheet-concept A. Such a selection defines a metaphor A is B. The second
column of table 2 displays the percentage of participants of BASICS, who selected
the intended metaphor. The third column displays, which unintended concept B’ was
associated most to A. The last column shows the students’ judgments about usefulness
and – in parentheses – plausibility of the explanation given during the EVALUATE
session.

Intended metaphor

Recognized
by

Most selected not-
intended target-
concept

Usability
(plausibility)
1=A, 6=F

64

Absolute reference is writing an
address on a letter.

47% Formula (20%) 2.5 (2.3)

Absolute reference is a connec-
tion to an outlet.

44 % Copying (19%) 2.6 (2.8)

Absolute reference is an ID
number.

20% Relative reference
(37%)

2.7 (2.6)

A format is a look 44 % Relative reference
(22%)

2.8 (2.9)

Copying a formula is customiz-
ing T-shirt production

24% Formula (29%) 3.0 (2.9)

Relative reference is touching a
person

0% Absolute reference
(43%)

3.2 (3.1)

Relative reference is navigation 13% Copying (40%) 3.4 (3.3)
Displaying the result of a formu-
la is decorating a shop window

23% Relative reference
(29%)

3.9 (3.7)

Displaying the result of a formu-
la is shadow play

12% Relative reference
(31%)

4.5 (4.1)

Table 1. Recognition and evaluation of spreadsheet-related metaphors (BASICS)

None of the metaphors were really convincing to the students – at least at first sight.
The best accepted and recognized images were those visualizing absolute reference
and format of numbers. But less than half of the students recognized these during the
EXPLAIN session. Although most students proved in the USE session that they were
able to adopt relative referencing properly, they did not pick the images that were
intended to illustrate this concept. Complete failures were metaphors for evaluating
formulas. The students neither selected the images as appropriate illustrations nor did
they accept the explanation given in the EVALUATE session. Here is an example of
an explanation of the unsuccessful metaphor “displaying the result of a formula is
shadow play”, which got a “D minus“both for usability and plausibility:
“The hands are a formula, the shadow is a value and the cell is a projection screen.
The hands produce an image that is displayed on the screen. “

On the other hand the figures seem to show some learning effects: Metaphors like
“relative reference is touching a person” (see figure 4) and “copying is customizing T-
shirt production” were not selected at first sight during the EXPLAIN session but
were accepted later during EVALUATE. Obviously many students accepted these
metaphors only in combination with verbal discussions and explanations.

The second activity LOCKS (23 participants) evinced a few very successful meta-
phors, including these:

� Output data is smoke from a chimney (96%)
� Access control (lock)1 is locking with a padlock (96%).

1 In English spreadsheet user interfaces the metaphorical term “lock” is used for access con-

trol (blocking write-operations), while in German-speaking cultures the metaphor “barrier”
(German: “Sperre”) is applied.

65

� access control (lock) is protection by a bicycle helmet (74%).
� output data is cookies from an oven (74%).
� input data is ingredients for baking (57%).
� A cell is a stage (39%).

The numbers in parentheses are the percentages of those, who chose the metaphor by
drawing a line between an image and a concept box. Rather unsuccessful were all
metaphors illustrating the idea of a formula:

� A formula is an orange juice squeezer (26%).
� A formula is a toaster (9%).

Both metaphors support the idea that a formula processes input data and delivers
output data as a result. This idea was explicated in the given concept map.

In LOCKS-EXPLAIN the students were asked to draw one additional image that
illustrates one of the concepts. Most of them (10 persons) tried to visualize access
control (lock) by connecting it to real life objects, including these: A PIN number on a
cell phone (2), a prison (2), a knight’s shield, a closed door with a “No admittance”-
sign, access control to a computer by password check, blocking friends in Facebook, a
sealed letter, a strong door protecting against burglary.

Another 6 persons created a picture illustrating output data (pizza take away,
 gases from the exhaust of a car or a motor cycle, nut-cookies from the oven) 3 per-
sons tried to visualize a spreadsheet cell and one person illustrated a formula just by
giving a concrete example. Nobody dared to visualize a formula.

5 Educational perspectives – how to use metaphorical images in
the classroom

Let me sketch two class room activities (collaborative games) using metaphorical
images.

Collaborative puzzle. Three or four people play together. On the table there is a
laminated sheet of paper as game board. It depicts an incomplete concept map. Miss-
ing labels for relations (arrows) are tagged by rectangles with question marks. Addi-
tionally there are circles with question marks close to concepts (boxes) as placehold-
ers for metaphors. The players use a deck of cards with metaphorical images and la-
bels for relations. The cards are shuffled and distributed – face down – to the players.
In turn, each player places a card on an appropriate location on the board and covers a
question mark. The she or he explains the move. When all question marks are cov-
ered, the players compare their result with the solution.

66

Fig. 5. Game board for a collaborative puzzle.

Concept Rummy. Three or four players share a deck of cards. The deck consists of
ten series consisting of four cards each. The first card of a series (concept-card) shows
a description of a spreadsheet concept illustrated by a screen shot. The other three
cards are corresponding metaphorical images depicting things from different domains.
The cards are shuffled and put on a stack, face down. In turn each player takes the top
card and tries to place it. Concept-cards can be put immediately on the table. Images
must be placed close to a suitable concept-card. Each move has to be explained (“This
image corresponds to this concept, because …”). When a player cannot place a card,
she or he just keeps it and waits for the next turn.

The idea of these activities is to evoke active elaboration and discussion. This way,
implicit semantic facets of concepts are verbalized and explicated. The students use
the relevant words and construct meaning. According to Hattie [10] there exists evi-
dence that collaborative activity in small groups (opposed to individual learning) in-
creases the efficiency of learning (effect size d=0.56). In order to avoid a “split-
attention effect” [13] and reduce cognitive load the images should be located close to
the corresponding concepts. This was not the case in the EXPLAIN sessions but it can
easily be done using cards.

Many variations of such games are possible. Even better if students create images
and games by themselves. In Wikimedia Commons, teachers and students can find
millions of images that are published under Creative Commons Copyright and can be
used legally for creating new metaphorical illustrations. But it must be kept in mind
that creating media is difficult and takes time, which may not always be available.
What is important is to establish a culture of explaining things. Really deep under-
standing is required when it comes to building unusual connections between objects
from knowledge domains which are far away to each other – like an orange juice
squeezer and a spreadsheet formula.

67

6 References

1. Baker, J., Sugden, S.J.: Spreadsheets in Education – The First 25 Years. In: Spreadsheets
in Education (eJSiE): Vol. 1: Iss. 1, Article 2. Available at:
http://epublications.bond.edu.au/ejsie/vol1/iss1/2. (2003).

2. Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cuniff, D., ... & Verno,
A.: CSTA K-12 Computer Science Standards, available at
http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf (2011).

3. Grundsätze und Standards für die Informatik in der Schule: Bildungsstandards Informatik
für die Sekundarstufe I; Empfehlungen der Gesellschaft für Informatik eV. LOG IN Ver-
lag, available at
https://www.gi.de/fileadmin/redaktion/empfehlungen/Bildungsstandards_2008.pdf (2008).

4. Chemero, A.: An Outline of a Theory of Affordances. In: ECOLOGICAL
PSYCHOLOGY, Lawrence Erlbaum Associates, Inc. 15(2), pp. 181–195 (2003).

5. Brown, P.S., Gould, J.D.: An experimental study of people creating spreadsheets. In: ACM
Transactions on Office Information Systems, 3 pp. 258-272 (1987).

6. Powell, S. G., Baker, K. R., & Lawson, B.: A critical review of the literature on spread-
sheet errors. Decision Support Systems, 46(1), 128-138 (2008).

7. Meyer, J.H.F., Land, R.: Threshold Concepts and Troublesome Knowledge 1 – Linkages
to Ways of Thinking and Practicing. In: Improving Student Learning – Ten Years On.
C.Rust (Ed.), OCSLD, Oxford (2003).

8. Novak, J. D. & A. J. Cañas, The Theory Underlying Concept Maps and How to Construct
Them, Technical Report IHMC CmapTools 2006-01, Florida Institute for Human and Ma-
chine Cognition, available at:
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
(2006)

9. Scheele, B., Groeben, N.: Dialog-Konsens-Methoden zur Rekonstruktion Subjektiver The-
orien: die Heidelberger Struktur-Lege-Methode (SLT), konsensuale Ziel-Mittel-
Argumentation und kommunikative Flussdiagramm-Beschreibung von Handlungen. Tü-
bingen: Francke (1988).

10. Hattie, John: Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to
Achievement, London: Routledge (2009).

11. Lakoff, G., Núñez, R.: The Metaphorical Structure of Mathematics: Sketching Out Cogni-
tive Foundations for a Mind-Based Mathematics. In L. English (Ed.), Mathematical Rea-
soning: Analogies, Metaphors, and Images (pp. 21-89). Hillsdale, NJ: Erlbaum (1997).

12. Lakoff, G., Núñez, R. E.: Where mathematics comes from: How the embodied mind brings
mathematics into being. Basic books (2000).

13. Sweller, J.: Visualisation and instructional design. In Proceedings of the International
Workshop on Dynamic Visualizations and Learning, pp. 1501-1510 (2002).

68

Teacher Education in Informatics

Eliciting Computing Science Teachers’ PCK
using the Content Representation Format

Experiences and Future Directions

Erik Barendsen1, Valentina Dagienė2, Mara Saeli3, and Carsten Schulte4

1 Radboud University Nijmegen, Institute for Computing and Information Sciences,
and Open Universiteit, The Netherlands, e.barendsen@cs.ru.nl

2 Vilnius University, Faculty of Mathematics and Informatics,
Lithuania, valentina.dagiene@mii.vu.lt

3 Milton Keynes, United Kingdom,
marasaeli@yahoo.it

4 Freie Universität Berlin, Institut für Informatik,
Germany, schulte@inf.fu-berlin.de

Abstract. This paper focuses on the Content Representation (CoRe) format as an
instrument to elicit teachers’ Pedagogical Content Knowledge (PCK) in the area
of computing education. We discuss several methodological variations in the use
of the instrument, originating from previous studies by the authors in which CoRe
was applied. As a new example, we report on a recent case study, portraying the
PCK of Lithuanian teachers with respect to programming. The variations in the
teachers’ articulated PCK appear to reflect their respective backgrounds, as well
as various known beliefs on the nature and purpose of programming education.
We reflect upon the effects of the methodological variations in the above case
studies. Group sessions tend to result in more substantial PCK data than indi-
vidual elicitations. However, the individual data of the Lithuanian case study,
obtained in very limited time, appeared surprisingly rich. Our observations give
rise to new research questions.

1 Introduction

The concept of pedagogical content knowledge (PCK) was introduced by Shulman
(1986) as “the knowledge of teachers to help others learn”, including “the ways of
representing and formulating the subject that makes it comprehensible to others”. PCK
is considered to be topic-specific and thus closely related to teachers’ content knowl-
edge (CK). The exact nature of the relation between PCK, CK and general pedagogical
knowledge is subject to debate (PCK Summit, 2012).

We adopt the model by Magnusson, Krajcik, and Borko (1999) and distinguish four
aspects of PCK with respect to a certain topic: (a) knowledge about learning goals
and objectives connected to the topic, (b) knowledge about students’ understanding of
the topic, (c) knowledge about instructional strategies for teaching the topic, and (d)
knowledge about ways to assess students’ understanding of the topic.

Insight in teachers’ PCK of a given topic, as well as the way such PCK develops,
is interesting in itself but also crucial for teacher education. However, eliciting PCK

71

from teachers is difficult. Indeed, PCK is personal and tends to be tacit, and underlying
reasons for applying a certain instructional strategy are seldom explicitly articulated or
shared between colleagues (Loughran, Mulhall, & Berry, 2004). Several methods have
been proposed, including interviews (e.g., Henze, Van Driel, & Verloop, 2008), Peda-
gogical experience Repertoires, PaP-eRs, (Loughran et al., 2004), classroom observa-
tions (e.g., Gess-Newsome et al., 2011) and reflective journals (e.g., Wongsopawiro,
2012).

Thus far, PCK has mainly been investigated in the context of science education.
Only few attempts have been made to capture PCK of teachers of computing subjects
such as informatics or IT. However, the PCK approach has shown to be fruitful to ex-
plore professional knowledge of informatics teachers (Saeli, 2012).

In this paper we will discuss various ways to apply the Content Representation
(CoRe) format introduced by Loughran et al. (2004). After introducing the CoRe in-
strument, we will summarize the authors’ experiences from previous activities. Then
we focus on a new case study, investigating the PCK of Lithuanian teachers on the sub-
ject of programming. Since this paper focuses on methodological issues, we present
only part of the results. We conclude with a discussion of the applied techniques, com-
paring the effects of the methodological variations, and an outlook on future research.

2 The Content Representation Format

2.1 The Instrument

The Content Representation (CoRe) format is an instrument to investigate teachers’
PCK of a specific topic (Loughran et al., 2004). It captures the key ideas connected to
the topic, and sets out the teachers’ knowledge about each idea through 8 questions,
see Table 1. The questions cover the four PCK aspects by Magnusson et al. (1999)
mentioned in the previous section: questions 1, 2 and 3 refer to aspect (a), 4 and 5 to
aspect (b), 6 and 7 to aspect (c), and 8 to aspect (d). Loughran et al. (2004) originally
introduced the CoRe format as an interview tool. In the following subsections we will
describle the application of the instrument in various settings in the context of comput-
ing education.

2.2 Example: Focus Groups on Programming

Focus groups as a means to collect PCK data was applied by Saeli (2012). Because the
goal of the study was to portray a common (‘shared’) PCK of Programming, only ex-
perienced teachers with Computer Science background were invited to take part to the
research. Six different focus groups were organized in 4 European countries: Lithua-
nia, Italy, Belgium and the Netherlands. A total of 31 teachers took part to the focus
groups, varying from 4 to 7 teachers. Teachers were told the sessions would concern
the teaching of programming, and consisted of two parts for a total of up to 2 hours.
Each session was video-taped and written notes collected. During each part teachers
first worked individually and then shared their answers with their peers and discussed
their views/opinions in group.

72

drawn to general pedagogical matters. The completed sheets showed far less informa-
tion than the researchers had observed during the session. This suggests that additional
data collection (such as audio recordings) is necessary in the case of groupwise elicita-
tion, complementing the written summaries.

2.3 Example: Electronic Collection of PCK data

CoRes have also been used to investigate Dutch teachers’ PCK, using the results de-
scribed in the previous example as standard for comparison (Saeli, Perrenet, Jochems,
& Zwaneveld, 2012). Aiming at reaching as many teachers as possible, the CoRe in-
strument has been adapted to be used as an online questionnaire.

Teachers were first prompted with a closed question concerning the aforementioned
core concepts of programming obtained from the focus groups. The teachers were asked
to choose one. The following part of the questionnaire intended to get an idea about the
teachers’ content knowledge. The remainder of the questionnaire consisted of eight
open ended questions based on the CoRe format. These were presented with the same
wording as the questions asked during the focus group sessions.

A total of 92 teachers took part to the questionnaire, with 69 valid responses. Teach-
ers were categorized according to their disciplinary backgrounds, as in the Netherlands
CS teachers have mostly a degree in a subject other than Computer Science. Dutch
teachers’ PCK was compared with respect to both CK and to content representation.

The results with respect to CK were low to average. The results on the content rep-
resentation component showed poor answers without much elaboration, especially on
the question relative to extracurricular knowledge and teaching methods. This could in-
dicate that teachers need more support by, e.g., teaching materials and examples. This
result was also reflected in an international study (Saeli, Perrenet, Jochems, & Zwan-
eveld, 2011). The answers were much richer on issues such as reasons to teach, stu-
dents’ prior knowledge and difficulties relative to the teaching of a topic. The results of
this study could help Dutch scholars (Perrenet, Van Diepen, & Zwaneveld, 2011) in the
process of revising the whole subject.

The use of CoRe as an electronic instrument gives the chance to gather more partic-
ipants, as teachers can comfortably answer the questions at their place of choice and at
their own pace. Also, teachers were given the opportunity to complete the questionnaire
in installments, to allow maximum flexibility. However, some answers might have been
more complete if given in an interview.

2.4 Example: CoRe in Pre-service Teacher Education

Another use of the instrument is as a part of pre-service teacher education. To fos-
ter reflection, group discussion, and to get feedback on the students’ learning progress
(formative assessment). Within the Bachelor degree of CS teacher education at Freie
Universität Berlin, teacher students design, implement, teach and refine a teaching unit.
The teaching is done by inviting high school classes to the university, into the teach-
ing and learning lab. The instrument is used immediately before a teaching experience,
afterwards, and after a cycle of two or three repetitions of teaching and refining the
teaching module. In order to assess and foster a discussion on the most central topic of

Table 1. CoRe questions

0. What are important ideas/concepts (‘Big Ideas’) concerning this topic?
For each Big Idea:
1. What do you intend the students to learn about this Big Idea?
2. Why is it important for the students to know this Big Idea?
3. What else do you know about this Big Idea (and you don’t intend students to

know yet)?
4. What are the difficulties/limitations connected with the teaching of this Big

Idea?
5. Which knowledge about students’ thinking influences your teaching of this

Big Idea?
6. Which factors influence your teaching of this Big Idea?
7. What are your teaching methods (any particular reasons for using these to

engage with this Big Idea)?
8. What are your specific ways of assessing students’ understanding or confusion

around this Big Idea?

During the first part of the focus group session, teachers were asked to list what
in their opinion are the core topics of programming. After discussing their results, the
group was asked to choose two or three of these topics. At this point, teachers were
presented a CoRe form and were asked to answer the questions using their experience.
During these sessions teachers had the chance to reflect on their own practice and be-
come acquainted with others’ approaches. Seven Big Ideas were discussed in the differ-
ent sessions, namely: control structures, data structures, arrays, problem-solving skills,
decomposition, parameters and algorithms. The results of this study were compared
with the literature. While some of the results turned out to confirm what the literature
already suggested as possible teaching approaches, others appeared to be new.

It appeared that teachers were motivated to take part in the study as it was an op-
portunity to share views/ideas with peers. In most cases, the subject was taught by only
one teacher per school, limiting the informal contact between teachers. From the re-
search point of view, the focus-group approach, in contrast with individual interviews,
gives teachers the opportunity to deepen their personal reflection as a result of group
discussion. Organizing the focus groups turned out to be tedious due to varying teach-
ing schedules, but teachers seemed to recollect more of their own experiences and view
while discussing with their peers. On the other side, the collected data gave little insight
into individual teachers’ PCK.

A similar focus group setting has been used in the context of an in-service teacher
education programme in Nijmegen (the Netherlands). The participants were divided
into groups of 4–5 teachers. The big ideas obtained from the international study were
presented to the groups, and each group chose one idea. The group members discussed
the idea according to the CoRe questions. One of the group members was asked to sum-
marize the discussion on a paper with a CoRe form. Two of the authors monitored the
group activity, which turned out to be very lively. The discussions were forced to end
after one hour. The participants reported that they enjoyed the session since this had
been one of the few occassions to discuss teaching in an in-depth way, without being

73

drawn to general pedagogical matters. The completed sheets showed far less informa-
tion than the researchers had observed during the session. This suggests that additional
data collection (such as audio recordings) is necessary in the case of groupwise elicita-
tion, complementing the written summaries.

2.3 Example: Electronic Collection of PCK data

CoRes have also been used to investigate Dutch teachers’ PCK, using the results de-
scribed in the previous example as standard for comparison (Saeli, Perrenet, Jochems,
& Zwaneveld, 2012). Aiming at reaching as many teachers as possible, the CoRe in-
strument has been adapted to be used as an online questionnaire.

Teachers were first prompted with a closed question concerning the aforementioned
core concepts of programming obtained from the focus groups. The teachers were asked
to choose one. The following part of the questionnaire intended to get an idea about the
teachers’ content knowledge. The remainder of the questionnaire consisted of eight
open ended questions based on the CoRe format. These were presented with the same
wording as the questions asked during the focus group sessions.

A total of 92 teachers took part to the questionnaire, with 69 valid responses. Teach-
ers were categorized according to their disciplinary backgrounds, as in the Netherlands
CS teachers have mostly a degree in a subject other than Computer Science. Dutch
teachers’ PCK was compared with respect to both CK and to content representation.

The results with respect to CK were low to average. The results on the content rep-
resentation component showed poor answers without much elaboration, especially on
the question relative to extracurricular knowledge and teaching methods. This could in-
dicate that teachers need more support by, e.g., teaching materials and examples. This
result was also reflected in an international study (Saeli, Perrenet, Jochems, & Zwan-
eveld, 2011). The answers were much richer on issues such as reasons to teach, stu-
dents’ prior knowledge and difficulties relative to the teaching of a topic. The results of
this study could help Dutch scholars (Perrenet, Van Diepen, & Zwaneveld, 2011) in the
process of revising the whole subject.

The use of CoRe as an electronic instrument gives the chance to gather more partic-
ipants, as teachers can comfortably answer the questions at their place of choice and at
their own pace. Also, teachers were given the opportunity to complete the questionnaire
in installments, to allow maximum flexibility. However, some answers might have been
more complete if given in an interview.

2.4 Example: CoRe in Pre-service Teacher Education

Another use of the instrument is as a part of pre-service teacher education. To fos-
ter reflection, group discussion, and to get feedback on the students’ learning progress
(formative assessment). Within the Bachelor degree of CS teacher education at Freie
Universität Berlin, teacher students design, implement, teach and refine a teaching unit.
The teaching is done by inviting high school classes to the university, into the teach-
ing and learning lab. The instrument is used immediately before a teaching experience,
afterwards, and after a cycle of two or three repetitions of teaching and refining the
teaching module. In order to assess and foster a discussion on the most central topic of

74

the teaching unit, the participants formulate the topic (Big Idea) for themselves (ques-
tion 0). Results of group discussions are also collected as CoRes and presented to the
whole course.

Buchholz, Saeli, and Schulte (2013) use the result to monitor progress. The ques-
tions are divided into a teaching nexus (questions 1, 2, and 3) and a learning nexus (4,
5, 8). Questions 6 and 7 were not assigned to be either on teaching or learning side. The
distinction between teaching nexus and learning nexus draws upon work from Trigwell,
Prosser, and Ginns (2005), who distinguish a teacher centered, and a student centered
view in teacher professionalism, together with the idea that students progress from a
teacher centered to a student centered viewpoint.

Results in the Buchholz et al. (2013) study show a greater progression in the ques-
tions associated to teacher nexus than in the questions related to the learning nexus.
This might be due to the focus of the university course, in which the materials were
updated during the cycles, but not much reflected on specific learning issues of high
school students. In the first three questions, the answers mostly took a teacher-oriented
point of view. Also in the learning nexus the students’ initial teacher-centered focus is
visible. E.g., only very few answers to Question 4 point at specific learning obstacles.

It appears that this use of the CoRe instrument integrates well into the pre-service
teacher education. It serves as a formative assessment of the learning progression of the
students (on a group and an individual level). We have seen that it can be used with
rather strict time constraints; so it does not take much more than around 15 minutes.
However, repeatedly answering the same questions tends to get tedious for the partici-
pants. In addition, if participants define the topic (question 0) on their own it becomes
somewhat unclear if the answers are really belonging to the same topic.

3 Case Study: Portraying Lithuanian Teachers’ General PCK on
Programming

3.1 Context of the study

For many years, Informatics has been a subject in Lithuanian secondary education.
It was a compulsory subject from 1986 to 2004, and has been replaced by Information
Technologies (IT) in 2005. IT is a compulsory subject in grades 5, 6, 9 and 10. There are
optional modules on informatics (viz., programming) in grades 9–12. In small schools,
however, it can be hard to get enough students to justify teaching these optional mod-
ules.

The participants in this study were attending a workshop for CS and IT teachers
from rural areas of Lithuania. All teachers had at least 5 years of teaching experience.

Investigating these teachers’ PCK is interesting because the change from informat-
ics to IT has had substantial impact on teacher qualifications. The older informatics
teachers (educated before 2005) have a strong background in informatics as well in
mathematics (as the subjects were commonly combined in education programmes). The
younger IT teachers do not necessarily have a background in computer science. More-
over, the focus of in-service training has shifted from development of technical skills
to the pedagogical aspects of integrating IT into education. Substantial attention is paid

75

to develop computational thinking and new skills to be required in the information age
(e.g, handling large amounts of information, algorithmic thinking, structured thinking,
and problem solving).

3.2 Aim of the Study

The study aims at exploring the teachers’ general PCK with respect to programming.
In this paper we focus on the first aspect of PCK, knowledge about learning objectives.
We are also interested in the relation between this PCK and the teaching experience of
the participants. On a methodological level, we aim at exploring the nature and quantity
of the information collected using a simple CoRe questionnaire without any content
specific guidance.

3.3 Method

The participants were given a questionnaire with the 8 CoRe questions in Lithuanian, to
be filled in on paper. No ‘big ideas’ were given or asked for: ‘programming’ was stated
as subject. The actual questions spanned 1.5 sheet of paper, so the space for writing
down the answers was limited. The respondents were given 30 minutes to complete
the questionnaire. We also asked the participants to fill in their teaching experience (in
years) and whether or not they were teaching programming as a subject.

The completed forms were scanned and translated into English to prepare them for
analysis. The translation was verified by two native Lithuanian speakers with computer
science expertise, adding explanations to implicit references to local teaching customs
where necessary.

The teachers’ answers were first subjected to an exploratory inductive qualitative
analysis, adding descriptive codes to the respective answers. The initial coding was re-
viewed by the authors and codes were combined until a comprehensive and compact
coding scheme was reached. This final scheme was then applied to the data. The result-
ing coding was used for a frequency analysis.

The participants were divided into four groups according to their experience: less
than 10 years (group A), 10–14 years (group B), 15–19 years (group C), and 20 years or
more (group D). Using the coding and grouping, we looked for patterns within groups
and differences between groups. The frequencies and patterns were used to spot inter-
esting issues for a further (in-depth) review of the answers.

3.4 Results

A total number of 34 participants completed the questionnaire. All completed forms
were considered suitable for translation and analysis. On average the teachers had more
than 10 years of experience. The experience group sizes were as follows. Group A: 10
teachers (4 of which were teaching programming), Group B: 11 (10), Group C: 7 (6),
Group D: 6 (5).

In this more methodologically oriented paper we discuss only questions 1 and 2.
The full results will be included in a forthcoming article.

76

Question 1: What do you intend the students to learn? Statements concerning
‘programs’ and ‘algorithms’ were dominant. We distinguish some levels inspired by
Bloom’s (1956) hierarchy. The codes are displayed in Table 2.

Table 2. Codes for Question 1

code description

programs-know simple reference to programming languages or construc-
tions

programs-understand same, with ‘understanding’ as explicit goal
programs-apply apply programming constructions to produce elementary,

simple pieces of code
programs-analyze analyze programs
programs-synthesize create programs for a complete task
algorithms-know simple reference to algorithms
algorithms-understand same, with ‘understanding’ as explicit goal
algorithms-synthesize creating algorithms, algorithmization (applying and syn-

thesizing could not be distinguished effectively based on
the short answers)

problem solving explicit reference to solving problems or tasks
logical thinking literal reference; plain ‘logic’ was coded in category

‘other’
analytical thinking literal reference
attitude aspects related to students’ attitudes, such as critical think-

ing, persistance, etc.
other other learning goals or topics

The frequencies can be found in Table 3. We mention the total number of occur-
rences. While we are aware of the small sample sizes, we also display the relative fre-
quencies within each group (i.e., number of occurrences divided by group size), in order
to assess the global distribution of the codes. The Bloom level ‘evaluate’ was not found
in the answers. We summarize the findings of the frequency analysis and subsequent
qualitative analysis, illustrated by key examples taken from the data.

To role of programming to solve problems was recognized throughout. Experienced
teachers tend to stress higher order skills.

“To analyse a task, to create an algorithm to solve a task [. . .]”.
Beginning teachers focus more on simple applications.
“To create the very elementary programs, to understand the principles of pro-
gramming.”
Attitude development was mentioned especially by experienced teachers.
“patience [. . .] accuracy”
“motivation to finish the work; self-assessment;”
Moreover, the responses of experienced teachers contained more skills and a greater

variety.

77

Table 3. Frequencies for Question 1

code total relative A relative B relative C relative D

programs-know 3 0.1 0.1 0.1 0.0
programs-understand 4 0.1 0.0 0.4 0.0
programs-apply 5 0.3 0.2 0.0 0.0
programs-analyze 1 0.0 0.0 0.0 0.2
programs-synthesize 6 0.1 0.2 0.3 0.2
algorithms-know 1 0.1 0.0 0.0 0.0
algorithms-understand 2 0.1 0.0 0.1 0.0
algorithms-synthesize 11 0.0 0.5 0.6 0.2
problem solving 10 0.2 0.3 0.4 0.3
logical thinking 9 0.2 0.4 0.1 0.3
analytical thinking 2 0.0 0.0 0.1 0.2
attitude 11 0.0 0.2 0.7 0.7
other 14 0.1 0.5 0.6 0.7

“Ability to structure the task (problem); foresee the sequence of actions; define
possible data/result types. Learn to analyze the created program, looking for
mistakes.”

The teachers take a general point of view and hardly mention any technical details.
Only once some programming concepts were mentioned (“loop, array, record func-
tion”), whereas the responses contain plenty of process issues (“algorithmization”).

Question 2: Why is it important for the students to learn this? We used the codes
in Table 4 to analyze the answers. The observed frequencies are displayed in Table 5.
Again, respondents with more experience provided more substantial and more varied
answers.

Table 4. Codes for Question 2

code description

helps to develop structured thinking logical or analytical thinking
helps attitude development critical thinking, confidence, positive attitude to-

wards programming, etc.
develops problem solving skills –
prepares for future studies without explicit mentioning of IT
prepares for future IT studies –
prepares for future profession without explicit mentioning of IT
prepares for future IT profession –
prepares for future personal life for applications in real-life situations
develops awareness responses related to views on IT and program-

ming
other –

78

Table 5. Frequencies for Question 2

code total relative A relative B relative C relative D

helps to develop structured thinking 14 0.5 0.0 0.6 0.8
helps attitude development 6 0.2 0.1 0.4 0.0
develops problem solving skills 1 0.0 0.1 0.0 0.0
prepares for future studies 1 0.0 0.1 0.0 0.0
prepares for future IT studies 6 0.1 0.3 0.0 0.3
prepares for future profession 3 0.0 0.1 0.3 0.0
prepares for future IT profession 9 0.1 0.5 0.0 0.3
prepares for future personal life 3 0.0 0.2 0.1 0.0
develops awareness 4 0.3 0.0 0.1 0.0
other 11 0.2 0.2 0.3 0.8

Many teachers stressed the role of programming to develop thinking skills. It is
interesting that logical thinking was considered as a necessary learning goal or prereq-
uisite in the context of programming by beginning teachers (Question 1), whereas more
experienced teachers regard it more as a result of learning to program (Question 2).

References to preparations for future activities of the students (22 occurrences in
total) were mostly made by teachers in group B (13 occurrences, relative total frequency
1.2). Relevance for a professional career is dominant.

“Professions where coding is needed are becoming more popular. Their [stu-
dents] choice is based on enrollment, further studies, and demand of IT spe-
cialists.”

3.5 Discussion

Part of the apparent differences between beginning and experienced teachers, such as
the varying roles of ‘logical thinking’, are likely to be reflections of their respective
backgrounds with informatics or IT teacher education. The results show several inter-
esting differences, e.g., with respect to the role of attitudes and the level of programming
tasks, which are worthwhile exploring further.

The various opinions concerning the relationship between programming and prob-
lem solving correspond to well-established positions in the scientific community. For
example, Feurzeig, Papert, and Lawler (2011) argue that transfer of problem solv-
ing skills, including rigourous thinking, can be a reason to introduce programming in
schools. Other authors stress the importance of problem solving skills and creativity in
the process of programming (e.g., Romeike, 2008).

4 General Conclusion and Discussion

In this paper, we have examined several variants in using CoRe, an instrument con-
sisting of eight questions to uncover and document a teachers’ pedagogical content
knowledge. The variants and their effects are summarized in Table 6.

79

Table 6. CoRe usage comparison

aspect Focus groups Electronic Teacher Education Lithuanian case
study

data group individual individual and
group

individual

scope given topic
(programming) with
participants
defining Big ideas

given topic and
given Big idea (loop
within
programming

given topic without
big ideas
(programming)

medium verbal and written written (electronic) verbal and written written (pen &
paper)

context reflection in context
of a topic/big idea

reflection in context
of a topic/big idea

reflection with
focus on one
specific teaching
experience

reflection in context
of a topic/big idea

time 1-2 hours individual 15 min to 60 min 15-30 min
intention individual

diagnostics &
reflection on
practice with peer
discussion

research,
characterizing PCK

individual
diagnostics &
reflection on
practice with peer
discussion

research,
characterizing PCK

Taking the general experience into account that instant, individual, unguided usage
of the CoRe instrument as a questionnaire tends to give poor data (e.g., Loughran et
al., 2004), the data obtained from the Lithuanian case study appeared surprisingly rich.
The limitations in time and space make the results even more remarkable. We intend to
explore the other PCK aspects using the teachers’ collected data and elaborate on the
findings in a future paper.

Nevertheless, data obtained from guided group sessions results in more substantial
and more varied data, as the focus group sessions show. Our examples show, how-
ever, that filling in a CoRe form only partially reflects the repertoire of the participants.
Therefore, recording and analyzing the group activity is necessary. Combining individ-
ual work an groupwise discussion seems a fruitful way to collect both individual data
and peer-elicited elaboration.

The question remains which aspects of PCK are visible in the Lithuanian study,
given the above limitations and the fact that the data lacks conceptual technical details.
As the starting point was ‘programming’ in general, in contrast with elicited or given
conceptual ‘big ideas’, it seems likely that the CoRe questions also elicited, at least
partly, the teachers’ general curricular beliefs (Van Driel, Bulte, & Verloop, 2008). This
connection is worthwhile exploring.

At least in the cases where group activities were involved, there are clear signs
that the CoRe instrument stimulated reflection by teachers on their ideas and practice,
which in turn will help developing their personal knowledge and thus their PCK (Clarke
& Hollingsworth, 2002; Wongsopawiro, 2012). From this perspective, it is useful in
teacher education.

80

Acknowledgements. This research was supported by the Baltic-German University
Liaison Office through the German Academic Exchange Service (DAAD) with funds
from the Foreign Office of the Federal Republic of Germany. The authors are endebted
to Dr. Tatjana Jevsikova and Malte Buchholz for their help in processing the question-
naires and the data.

References

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational
goals. Harlow, Essex, England: Longman Group.

Buchholz, M., Saeli, M., & Schulte, C. (2013). Pck and reflection in computer science teacher
education. In Proceedings of the 8th workshop in primary and secondary computing edu-
cation. New York, NY, USA: ACM to appear.

Clarke, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth.
Teaching and teacher education, 18(8), 947–967.

Feurzeig, W., Papert, S. A., & Lawler, B. (2011). Programming-languages as a conceptual
framework for teaching mathematics. Interactive Learning Environments, 19(5), 487–
501.

Gess-Newsome, J., Cardenas, S., Austin, B., Carlson, J., Gardner, A., Stuhlsatz, M., . . . Wilson,
C. (2011). Impact of educative materials and transformative professional development
on teachers’ PCK, practice, and student achievement. (Paper set presented at the Annual
Meeting of the National Association for Research in Science Teaching, Orlando, FL, April
6)

Henze, I., Van Driel, J. H., & Verloop, N. (2008). Development of experienced science teachers
pedagogical content knowledge of models of the solar system and the universe. Interna-
tional Journal of Science Education, 30(10), 1321–1342.

Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in
science: Developing ways of articulating and documenting professional practice. Journal
of Research in Science Teaching, 41(4), 370–391.

Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical
content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.),
Examining pedagogical content knowledge (pp. 95–132). Dordrecht: Kluwer.

PCK Summit. (2012). Working conference held in Colorado Springs on October 20–26, 2012.
(http://pcksummit.bscs.org)

Perrenet, J., Van Diepen, N., & Zwaneveld, B. (2011). Which way with informatics in high
schools in the Netherlands? The Dutch dilemma. Informatics in Education, 10(1), 123–
148.

Romeike, R. (2008). What’s my challenge? The forgotten part of problem solving in computer
science education. In Informatics education – supporting computational thinking (pp.
122–133). Springer.

Saeli, M. (2012). Teaching programming for secondary school: a pedagogical content knowledge
based approach. Unpublished doctoral dissertation, Eindhoven University of Technology,
The Netherlands.

Saeli, M., Perrenet, J., Jochems, W., & Zwaneveld, B. (2011). Portraying the pedagogical content
knowledge of programming. (Submitted)

Saeli, M., Perrenet, J., Jochems, W. M. G., & Zwaneveld, B. (2012). Programming: Teachers
and pedagogical content knowledge in The Netherlands. Informatics in Education, 11,
81–114.

81

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Re-
searcher, 15, 4-14.

Trigwell, K., Prosser, M., & Ginns, P. (2005, November). Phenomenographic pedagogy and a
revised approaches to teaching inventory. Higher Education Research and Development,
24(4), 349–360.

Van Driel, J. H., Bulte, A. M. W., & Verloop, N. (2008). Using the curriculum emphasis concept
to investigate teachers’ curricular beliefs in the context of educational reform. Journal of
Curriculum Studies, 40(1), 107–122.

Wongsopawiro, D. (2012). Examining science teachers’ pedagogical content knowledge in the
context of a professional development program. Unpublished doctoral dissertation, Leiden
University, The Netherlands.

82

Curriculum Issues

Towards Combining Conceptual Lesson Patterns with
Austrian K12 Computer Science Standard Curriculum

in the Context of Pedagogical Content Knowledge

Bernhard Standl and Wilfried Grossmann

University of Vienna
Faculty of Computer Science

Währinger Strae 29, 1090 Vienna
{bernhard.standl,wilfried.grossmann}@univie.ac.at

Abstract. The teacher’s knowledge of teaching can be allocated at the intersec-
tion pedagogy and content knowledge and was suggested by Shulman as Ped-
agogical Content Knowledge. Such knowledge supports motivation of students
for the subject and teaching and learning in an inspiring way. Beyond different
approaches for defining teaching content for computer science lessons at K12,
we chose the Austrian standards for K12 of the DigiKomp curriculum. Based on
successful lesson scenarios for computer science, which were described as a pat-
tern network, we combine these patterns with the Austrian standards and propose
a structure how the patterns can be used for application of pedagogical-content
knowledge in Computer Science teaching. It can be seen as a first step towards
way to describe lessons in a modular representation.

Keywords: conceptual patterns, pedagogical content knowledge, digital compe-
tencies, lesson planning

1 Introduction

In this paper we introduce an approach how student-centered conceptual patterns as
pedagogical value base can be combined with computer science content given by the
Austrian curriculum for digital competencies as described in [1] and http://digikomp.at.
Considering pedagogy and content as parts of the teacher’s knowledge in the context of
Shulman’s [2] pedagogical-content knowledge (PCK), we use our pedagogical patterns
and as content the Austrian K12 computer science standard curriculum. We see that
both, the patterns and the competencies, can have a positive potential for the teachers
individual lesson planning if the lesson scenarios are described as abstract patterns in
combination with the given standards. In this discussion paper we first introduce the
pattern approach where the pedagogical theory of the student-centered approach as in-
troduced by Carl Rogers in [3] is captured uniformly as a network of 24 patterns. In the
second section we describe the Austrian standards for digital competencies as computer
science related content part. In the third section we show how pedagogy and content can
be combined for practice in the context of pedagogical content knowledge. In the last
section we give an example how an instantiation in practice could be carried out for the
topic ”Algorithms and Introduction into Scratch”.

85

2 Patterns

If learning scenarios are described uniformly as abstract patterns, relations, workflows
and interdependent entities, a view beyond detailed lessons is possible. One advantage
of such a representation is, that during the application it is more practicable for the
teacher if the scenarios are not given in detail but rather described as a pattern frame-
work to provide the freedom for an individual application. The structure of the pattern
approach as applied in this work is based on the pattern language as developed by Derntl
in [4] respectively C. Alexander’s approach in [5, 6] and was modified for computer sci-
ence K12 education in [7]. We suggest to use this pattern network, which contains 24
patterns from general ones as ’Project Style’ to specific ones as ’Group Work’. The
characteristic of the network is, that the patterns unfold their strengths if there are com-
bined with each other.

Fig. 1. The pattern network includes 24 patterns.

As it is depicted in the pattern network above, the relation from one single pattern
to other patterns is actually the most important part of the pattern system. Alexander
explicitly mentions that solely adding patterns to each other without interrelating them
does not lead to a meaningful pattern language. This means, that if the teacher plans
to carry out ’Group Work’ in the context of a ’Project Style’ lesson he has to consider
both patterns and possible related further patterns as for example ’Social organization’.
Even if our patterns describe rather pedagogical issues of lessons, they were developed

86

in the context of computer science lessons at secondary level and hence are especially
valid in such settings.

Fig. 2. Example of a pattern: Add Knowledge

Considering the example pattern above, patterns explain models for a solution of
a recurring problem in practice in order to make the solution available for an individ-
ual application and reuse in similar situations. Each pattern is structured in the same
way and includes the parts Name, Intent, Dependencies, Problem, Forces, Solution, Di-
agram, and Example in Practice. The diagram is visualized as UML diagram where
we use Classes and Associations as structural elements and associations visually to de-
scribe the characteristics of the pattern with possible connections to other patterns.

3 Austrian Standard for Digital Competencies

Computer science education in Austria at the secondary level is based on an unified
approach for competencies at the lower secondary level (11-14 years) and upper sec-
ondary level (15-18 years). Details may be found in [1] and http://digikomp.at. The
model combines a content dimension with an activity dimension. Content of the ref-
erence model is grouped into four main topics: Information Technology, Humans and
Society, Information Systems, Applied Computer Science, and Computer Science Con-
cepts. At the lower secondary level main emphasis is on practice and ICT and skills,

87

whereas at the secondary level the approach focuses more on computer science con-
cepts. This distinction is of major importance for Applied Computer Science and Com-
puter Science Concepts. The activity dimension is oriented on Bloom’s taxonomy and
covers lower cognitive skills like Knowing, Applying and Reflecting as well as Higher
cognitive skills like Understanding, Designing and Evaluating.

4 PCK as Pattern-Competencies Knowledge

Shulman’s definition in [2] of the specific teacher’s knowledge as ’pedagogical content
knowledge’ was, to place such knowledge at the intersection between subject knowl-
edge of experts and pedagogical knowledge of learning and teaching sciences. He de-
scribed the teacher’s knowledge as the ability to make subject content for students avail-
able in a way that students can easier understand and learn it. In more detail PCK con-
siders a number of knowledge components, which have been elaborated theoretically
and empirically for teaching science in [8] [9]. Most important are the following com-
ponents: orientation towards teaching, subject and curriculum knowledge, knowledge of
students understanding, assessment knowledge, and instructional strategies. Based on
this ideas we think that for teaching Computer Science it is important to describe both
parts - pedagogy and content in a general way to give the teacher the required flexibil-
ity for lesson planning. Therefore we use the previously described pattern network and
combine these patterns with the K12 standard competence curriculum in Austria. The
relation of the patterns and PCK can be briefly summarized as follows: The knowledge
component ”orientation towards teaching” is the background for all teaching. Patterns
1, 2, and 3 help to transform knowledge about students understanding into practice.
Patterns 4, 8, and 9 are essential for application of knowledge about the curriculum.
Patterns 10 - 15 list different alternatives for assessment, and patterns 6, 7, and 16 - 23
support the development of instructional strategies. Using the patterns, the teacher can
develop his individual pedagogical content knowledge by combining our pedagogical
patterns for student-centered teaching with the contents as defined by standard curricu-
lum. Hence, our approach can be seen as a base for teachers to support the development
of the specific knowledge as Shulman intended it. To create an individual lesson while
going conform with the pedagogical approach of student-centered lessons and the topics
as given by the curriculum the teacher uses the modularity of each system, the patterns
and the curriculum. In the next section we describe, how a teacher can instantiate such
scenario in practice for the introduction into programming at 9th grade.

5 Example Application

The following example shows how the combination of patterns and the standards can
work in application of PCK in teaching Computer Science.

1. Learning Objectives. First it has to be decided what students should learn. In this
example we want for example introduce basic principles of algorithms and pro-
gramming.

88

2. Context in Curriculum. Next, the corresponding section in the digital competen-
cies curriculum has to be chosen.
4 Practical Computer Science
4.2 Algorithms, Data and Programming
In our example the section in practical computer science is appropriate for the in-
tentions.

3. Example. On http://digikomp.at examples for the curriculum are provided where
a adequate can be chosen from. For our intentions we found an example for Intro-
duction into Scratch. This can build the framework for the indented lesson plan.

4. Patterns. Next the pedagogical approach for teaching the topic has to be chosen
where the patterns become relevant. Considering the pattern network as proposed
above, a pattern language as to be built for introducing basic concepts of algorithms
and programming language. We suggest to start with a teacher focused phase with
emphasis on knowledge transfer, followed by a project phase where students can
learn self-directed the achieved knowledge. The diagram bellow shows how content
can be combined with an appropriate combination of the patterns.

Fig. 3. Representation of the patterns and content.

5. Methods. We see further methodical concepts as further layer to be considered
beside pedagogy and content. As the examples on http://digikomp.at provide me-
thodical considerations for the examples, this layer can be extracted right from
there.

6. Practice. In order to document the planned approach in practice, a lesson plan can
be created in order to capture the intended plan.

This example demonstrates how our proposed approach can be carried out in prac-
tice in the context of pedagogical content knowledge with patterns as pedagogical value
base and content as provided by the national standards for digital competences.

89

6 Conclusions and Further Work

In this discussion paper we presented our approach of combining a pedagogical pattern
network with computer science content provided by the Austrian standards for K12
computer science education. The pattern network was developed for computer science
lessons and provides a value base for student-centered computer science lessons. We de-
scribed how these patterns can be seen in the context of pedagogical content knowledge
as pedagogical part. The approach was applied in classroom and showed that pattern are
useful to increase reflection-in-action and reflection-on-action. Moreover a preliminary
test showed that efficacy of teaching is increased [7]. According to [8] this are important
advantages of PCK. Future work includes the combination of the patterns further parts
of the Austrian computer science standards with examples for practice. As next step
this method has to be tested in practice and researched with case studies not only aimed
at proving the practicability and impact of our approach but also in the optimization of
the pedagogical pattern network. In order to make our approach more reusable we plan
to further develop a web application for an individual lesson planning and export to a
learning plattform as described in [10].

References

1. Micheuz, P.: From Digital Competence to Informatics Education. Structuring a WideField.
In Micheuz, P., Brandhofer, A., Sabitzer, B., Ebner, M., eds.: Digitale Schule in Österreich.
Österreichische Computer Gesellschaft (2013) 372–380

2. Shulman, L.S.: Knowledge and Teaching: Foundations of the New Reform. Harvard Educa-
tional Review 57 (1987) 1–22

3. Rogers, C.: Freedom to Learn for the 80’s. Charles E. Merrill Publishing Company, Colum-
bus, Ohio (1983)

4. Derntl, M.: Patterns for person centered e-learning. PhD thesis, University of Vienna (2006)
5. Alexander, C.: The Timeless Way of Building. University Press, Oxford (1979)
6. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Con-

struction. University Press, Oxford (1977)
7. Standl, B.: Conceptual Modeling and Innovative Implementation of Person-centered Com-

puter Science Education at Secondary School Level. PhD thesis, University of Vienna (2014)
8. Park, S., Oliver, J.S.: Revisiting the Conceptualisation of Pedagogical Content Knowledge

(PCK): PCK as a Conceptual Tool to Understand Teachers as Professionals. Research in
Science Education 38(3) (June 2007) 261–284

9. Veal, W., MaKinster, J.: Pedagogical Content Knowledge Taxonomies. Electronic Journal
of Science Education 3(4) (1999)

10. Standl, B.: A Web-Application for building Common Cartridge Learning Objects. In: Pro-
ceedings of World Conference on Educational Multimedia, Hypermedia and Telecommuni-
cations 2013, Chesapeake, VA, AACE (2013) 1461–1466

90

New trend in Russian informatics curricula: integration
of math and informatics

Sergei Pozdniakov1 and Svetlana Gaisina2

1 Saint Petersburg State Electrotechnical University (ETU),
pozdnkov@gmail.com

2 Academy of post-degree pedagogical education, Saint Petersburg,
g.selania@gmail.com

Abstract. Since the beginning of 1970s the course of informatics in USSR and
then in Russia has been in development as an independent subject. Now it has
a tendency to widen the covering of theoretical informatics and discrete math.
The article analyses perspectives of the integration processes of mathematics and
informatics and ways of smooth transition to the new curricula.

1 Introduction. History of school informatics in the USSR and
Russia

Below, we present a historical review that demonstrates the relationship between mathe-
matics and informatics in different periods of formation of the school informatics course
first in USSR and then in Russia. Note, that the informatics course in Russia and USSR
has never been a part of the mathematics course, although such proposals appeared
from time to time. Now the question about interconnections of mathematics and infor-
matics became urgent again, because according to the new standards that will come
into force in 2015, the informatics and mathematics courses are included into the same
educational area: “Mathematics and informatics”. At the same time, the subject “In-
formatics and ICT” is substituted with the subject “Informatics”, while ICT becomes a
part of metasubject competences, that should be formed as the result of studying of all
subjects.

1st stage. 50-70’s years of the XX-th century. It was before the emergence of the
school informatics. First computers were installed in some specialized mathematical
schools and their students began studying programming. Integration with mathematics
was presented as the application of computing schemes to the solution of mathematical
tasks.

2nd stage. 80’s years of the XX century. An informatics were introduced in school
curricula. The first textbook of informatics (author Yershov) appear. This period was
named period of “paper” informatics: schools have not computers and students wrote
programs in special algorithmic language in writing-books. Integration with mathemat-
ics during this period was present at the level of representation of numbers, use of
formulas, logical functions, the block schemes of algorithms. Subject was taught, as a
rule, by the mathematics teacher.

91

2

3rd stage. 90’s years of the XX century. This stage was characterized by the emer-
gence of personal computers and computer classes at schools. The study of algorithms
rapidly extended at schools curricula. Interests of pupils started to move from mathe-
matics to programming. So, the infomatics as a school subject, started to compete with
the mathematics, becoming the main passion for many pupils and the main application
of their forces. For those who was interested in depth study of informatics, the liter-
ature about the creation of algorithms both with proving their correctness appeared.
Note, that, during this period, a dynamic geometry software and a number of programs
to manipulate plots of functions were created, so it became possible to apply ICT for the
mathematical education, but computer classes were still used only to teach informatics,
so this was practiced only in rare schools.

4th stage. Beginning of the XXI century. The diversity of software leads to a parti-
tion of the informatics into two courses that together formed an educational area named
“Informatics and ICT”. The first course was the informatics itself, and the second course
was the technology course that replaced labour lessons and included ICT in particular.
In ICT lessons, mostly the office applications were studied. This period is characterized
by the huge drop of the interest to programming, that for a long time had been widely
connected with the concept of “informatics”. Programming was gradually moving to
the extracurricular activities. At the same time, one could mark a tendency in infor-
matics courses to widen the coverage of theoretical informatics such as the information
theory. Extracurricular courses stated to study cryptography.

5th stage. Late 10’s of the XXI century. Fast development of the Internet influenced
the course of informatics. The Renaissance of the interest to programming was observed
because of the web programming. A prototype of the Unified State Examination (USE)
in mathematics, informatics, and popular internet competitions appeared. The last were
used as a way to direct work of teachers to areas in which the course of informatics was
going to be extended.

The current stage is characterized by a stabilization of ideas about a proportion be-
tween programming and information technologies in the school course of informatics.
The Unified State Examination became an obligatory and a defining factor influencing
the contents of textbooks on informatics. The new Concept of mathematical education
in Russia was discussed, the main idea of its first versions was to integrate mathematics
and informatics. In the final version of the Concept this integration is reflected in less
extent, but the decision to associate the mathematics and informatics courses is anyway
made for the high school (10–17 years old). The experiment with the integrated course
has already began, and in 2015 it is going to be taught in all schools of Russia.

In this article some problems of integration of mathematics and informatics courses
will be discussed and possible solutions of the arising problems will be proposed.

2 Changes in curricula: the new federal standards

The new federal standard changes the structure of the basic educational program [1,
2]. It unites the mathematics and informatics subjects in one subject domain “Mathe-
matics and informatics” and defines general requirements to educational results such as
the development of logical and mathematical thinking, an acquaintance with an idea of

92

3

mathematical models; mastering mathematical reasonings; an ability to apply mathe-
matical knowledge to the solution of various tasks and to estimate the obtained results;
building skills to solve educational tasks; development of mathematical intuition; de-
veloping a picture of information processes in practical situations [3].

Table 1 presents a comparison list of skills that are tested by the Unified State Ex-
amination (USE in what follows) in mathematics and informatics. The integration of
courses supposes that the building of these skills may become more effective if both
topics are learned together.

In the field of informatics, the Federal standard is aimed at study the its fundamen-
tals, it treats the informatics as a sciences about methods of analysis and assessment of
the information, that allow for an effective decision making [4]. The important type of
the educational activity is the application, analysis, and transformation of information
models of real objects and processes by means of the information and communica-
tion technologies (ICT), including the study of other school disciplines. The conceptual
idea of the new course, as before, is a mastering of the modeling as a method of learn-
ing objects, phenomena and processes of the real world. The new standard amplifies
the orientation of the informatics course onto formation and development of algorith-
mic thinking, skills of algorithms construction and programming. The ICT competence
was defined by the standard of 2004 as the “educational result, formed by the course
of informatics and ICT”. The new standard defines this competence as metasubject ed-
ucational results formed and developed throughout all the process of training at high
school.

Table 2 presents an analysis of USE tasks that demonstrates how many different
informatics tasks demand diffeferent mathematical areas.

In the new standard the course of informatics is considered as a continuous course
which includes a preliminary course at elementary school (6–10 years old), training
in the middle and high school, and also a profile training in informatics in the senior
classes (15–17 years old). By the end of elementary school (10 years) pupils get ICT
competence, sufficient for further training. The purposes of school informatics are: the
comprehensive development of pupils personality, obtaining knowledge, building of
necessary skills, development of cognitive interests and creativity, development of per-
sonality traits valuable for each person and society as a whole. The course of informatics
in the middle-school relies on the experience of everyday application of the ICT formed
at elementary school and gives theoretical judgment, interpretation and synthesis of this
experience. Together with mathematics, physics, chemistry, biology the course of infor-
matics lays the foundation of the natural-science outlook.

The new standard introduced the two methodological sections in the mathematics
curricula: logic and sets. In the existing standard of 2004, a topic “Elements of Com-
binatorics, Statistics and Probability Theory” was included in the profiling level, but in
new standard it is offered to be studied at the basic level.

93

4

3 The unified state examination (USE) as a method of
reorientation of teachers onto new standards: analysis of
mathematics and informatics variants

Russian Federation recently accepted the Bologna convention and as a result introduced
the all-Russian system of the knowledge quality assessment of pupils in the form of the
unified state examination (USE). It defined the significance of theoretical knowledge
for practical activities. So, for example, tasks on the subject “Elements of Combina-
torics, Statistics and Probability Theory” mentioned above were included in materials
for monitoring and measuring (MMM) and constituted 3% of the total number of math-
ematical tasks. In MMM of “Informatics and ICT” this subject was not selected as an
independent section, but a student should know it because it was used as a tool to solve
informatics tasks. About 40% of tasks in informatics and ICT check skills in represen-
tation of tabular and graphic data, a sequential and a simultaneous choice of several
elements from a finite set, an ability to solve combinatorial problems, to determine
a probability and statistical frequency of an event. The tasks in MMM on mathemat-
ics and informatics suppose the knowledge of numerical characteristics of data series,
properties of binomial coefficients and the Pascal’s triangle, number of permutations,
combinations, arrangements, and they also suppose an ability to apply this knowledge
to the solution of practical problems.

The topics which traditionally belonged to the course of mathematics such as “Sim-
ulation”, “Numeration systems”, “Logic” in MMM were attributed to the informatics
and ICT, where they were divided into independent sections “Simulation and Computer
Experiment”, “Numeration systems”, “Logic and Algorithms”, “Processing of Numer-
ical Information”, and they composed 30% of the total number of tasks. The structure
of MMM underwent both qualitative, and quantitative redistributions (the Figure 1).

Fig. 1. Distribution of sections weights. In 2014th there were no changes in the distribution of
jobs in comparison with 2013th

94

5

Table 1. Checked abilities on Unified State Examination

Mathematics Informatics

– to be able to use the acquired knowledge
and abilities in practical activities and ev-
eryday life;

– to be able to execute computation and con-
versions;

– to be able to solve the equations and in-
equalities;

– to be able to execute actions with func-
tions;

– to be able to execute actions with geomet-
rical figures, coordinates and vectors;

– to be able to build and research mathemat-
ical models.

– simulation of objects, systems and pro-
cesses;

– interpretation of results of simulation
– determination of the quantitative parame-

ters of information processes
– to accomplish information search and se-

lection
– to create and use data storage structures
– to work with widespread automated infor-

mation systems
– to use the computer for sound processing

Based on the analysis of the demo version of the Unified State Examination of 2014
it is possible to see that only 2 tasks from 32 tasks (less than 10%) on informatics do
not require computations.

Table 2. Comparing of Unified State Examinations jobs in mathematics and informatics

Units of the mathematics cod-
ifier

Number of tasks in mathemat-
ics according to the specifica-
tion

Number of tasks in informat-
ics which require knowledge
in corresponding section in
math

Algebra 8 30
Equations and inequalities 5 6
Functions 2 6
Elements of combinatorics,
statistics and theory probabil-
ities

1 14

All these changes characterize the strengthening of integration of mathematics and
informatics.

95

6

4 Current problems of integration of mathematics and informatics
and direction of their solution

Since the implementation of the new standards and the training programs which inte-
grate mathematics and informatics has begun just recently, it is necessary to make an
analysis of problems which may arise and propose ways for their solution.

Problem 1. One of the important problems is the insufficiency of ideas of the discrete
mathematics and theoretical informatics in the traditional course of mathematics. There
is a need to expand the mathematics course by adding new sections of the discrete
mathematics. How to do it without exceeding the volume of mathematics within the
curricula?

Problem 2. The first problem is closely connected with the problem of how to save
mathematical culture while modifying the curricula. The mathematical culture is tradi-
tionally based on the contents verified and optimized during many years. The changes
of the subject contents should not deplete the means of formation of the intelligent
mechanisms of the trainee.

Problem 3. The third problem is the continuity problem. How should changes be
done to switch to the new contents smoothly? Whether it is possible to use a traditional
material to create the new representations relevant for the modern reality?

Problem 4. How to take into account the process of informatization of the society
that influences the changes in nature of intellectual activities, without sacrificing the
development of trainees’ intelligent mechanisms?

Solutions proposed for Problem 1. The changing of the curricula in the modern con-
ditions can start in the supplementary education. Supplementary education in new Rus-
sian standards is considered as a mandatory part of the school training. As an example of
such an approach in Russia we present the competition “Construct, Test, Explore” [5–
7]. This project is organized by the Computer Tools in Education Journal. Every year
three special educational laboratories are created on the basis of this project. These lab-
oratories propose an active approach to master new fundamental ideas of informatics
and discrete mathematics. Certain research goals are set for the students, then they are
provided with the educational software that estimates the progress in reaching of the
goals based on a set of criterion for their partial solutions. The software allows students
to track the improvements of their solutions, and also to compare the solutions with
solutions of other participants. Within a week, school students make experiments. After
that the solutions are sent to the jury to determine winners. Teachers and pupils then
receive the methodical materials explaining theoretical aspects of problems which were
provided by the competition. The examples of educational modules in discrete math-
ematics and informatics created for the research on the basis of the “Construct, Test,
Explore” project are provided below [5]. One should note that modules usually have
interdisciplinary nature.

1. Is it possible to compute without consuming energy? (Billiard computer by Fredkin
and Toffoli)

2. Post’s lattice of boolean clones and their bases
3. Boolean schemata for pattern recognition
4. Shannon entropy in communication

96

7

5. Fermat’s principle in the search for the shortest path
6. Laws of interaction in an ensemble of particles
7. Optimization of routes in a graphs (a transport network)
8. Functional sorting
9. Calculations optimization

10. Gears and continued fractions: clock-calendar
11. Getting acquainted with the knot theory
12. Transformation groups and decomposition of complex transformations
13. NP-complete problems (variations of a traveling salesman problem)
14. Euclid algorithm and its generalizations (pouring fluids)
15. Finite automaton and the Turing Machine
16. Pendulums and the control of complex oscillations
17. Algorithms for programming devices

The other example is the “Beaver” competition [8] which along with the Unified
State Examination reflects the tendencies of the modification of the informatics course.
We have important results about the subjective complexity of the tasks for students
when they collide with new ideas of informatics [9].

Solutions proposed for Problem 2. Note that the traditional basis for the formation
of mathematical concepts is based on the external environment, that significantly changed
during recent years. An important role in the student’s habitat is now played by comput-
ers and the Internet, in other words, by the virtual reality which influence is comparable
with the influence of natural events. So, it is necessary to explain the laws of a noo-
sphere along with an explanation of the laws of the nature: how surrounding artificial
subjects are arranged and how they work. It is a source of new interpretations of that
general concepts which are already present in the mathematics; so, we should increase
a “weight” of the general concepts which have clear virtual presentations (for example,
geometrical conversions, polynomials, long numbers, logic expressions, formal gram-
mars).

It is necessary to consider the following psychological aspect: in a classical ed-
ucational environment the students themselves were the executors of algorithms, the
conceptualization of many concepts was carried out through elementary algorithms for
actions, i.e., skills [10]. The next step of the interaction of the person with the new
environment is the usage of external tools to fulfill different intentions. Therefore it is
important to partition algorithms to methods of conceptualization of knowledge and
objects of study in mathematics. In the first case a human uses herself as a performer.
This is not always justified, because the “data representation” of a human brain differs
from the data representation in the case of computers, and so the same algorithms turn
into different actions of the person and the machine.

Therefore it is important to separate the study of data structures from the study of
algorithms in the new integrated subject. Such a decision will change an approach to
study some math objects. For example it will lead to the teaching of long integers and
finite state automata, syntax trees as formulas representations and so on.

Solutions proposed for Problem 3. The support of the continuity of math courses
can be achieved by new interpretations of the traditional mathematical curricula [11].
For example ideas of multiplication and factorization of integers naturally receive inter-
pretations in terms of complexity of algorithms, and lead to basic cryptography ideas.

97

8

The study of operation with polynomials and other symbolic (algebraic) object can be
based on the question of “how these operations are executed inside the computer”. The
ideas of the formulas description through syntax trees naturally arise, and then an anal-
ysis and interpretation of operations with formulas through operations on trees become
possible. The separation of the formulas syntax from their semantic aspects is important
not only for informatics (discrete mathematics) but also for the “classical mathematics”.
For example, it is known that both for school students and for many teachers there is a
problem to distinguish concepts of an algebraic expression and a function because both
are described by formulas. The study of computer representation of formulas can help
teachers to solve pedagogical problems connected with different types of historically
formed elementary function notation, which not fall under the general template f (x)
(an exponential function, a logarithm on arbitrary base, a power function, a root).

Solutions proposed for Problem 4. The solution of the 4th problems can be based
on the usage of the computer features that expand human opportunities to form new
links inside one subject field and between various subjects. This is equivalent to the
extension of possibilities of “understanding”. So, the usage of verification tools, such
as, for example, implemented in the environments of dynamic geometry, allows to ex-
pand a set of means for human to justify statements concerning properties of various
mathematical objects [12].

5 Conclusion

1. Integration of mathematics and informatics makes it necessary to change the con-
tent of school mathematics to reflect ideas of the discrete mathematics and theoret-
ical informatics.

2. The smooth changing of the curricula can be achieved by the introduction of new
interpretations of studied concepts and the changings of accents in studying of tra-
ditional objects.

3. It is important to separate the study of data structures from algorithms in the new
integrated subject. Such a decision will change an approach to study some math
objects. “How computers would do it” is the thesis for the organization of practical
activities.

4. The conceptualization of mathematical concepts in the rich information environ-
ment can be reached by the extension of a number of links between mathematics
and informatics. This will compensate the reduction of conceptualization basis of
mathematical concepts through the building of a wide set of skills.

References

1. “Federal Educational Standard of Russia (FES)” [“Federalnyj gosudarstvennyj obrazovatel-
nyj standart osnovnogo obshhego obrazovaniya”] available at: http://standart.edu.ru/
catalog.aspx?CatalogId=2588

2. “FES: Secondary (full) general education” [“FGOS: Srednee (polnoe) obshhee obrazovanie”]
available at: http://standart.edu.ru/catalog.aspx?CatalogId=4099

98

9

3. “Draft of curricula in mathematics” [“Primernaya programma osnovnogo obshhego
obrazovaniya po matematike”] available at: http://standart.edu.ru/catalog.aspx?
CatalogId=2629

4. “Draft of curricula in informatics” [“Primernaya programmya po informatike”] available at:
http://standart.edu.ru/catalog.aspx?CatalogId=8421

5. Posov I., Pozdniakov S. (2013), “Implementation of Virtual Laboratories for a Scientific Dis-
tance Game-Competition for Schoolchildren”, The 2013 International Conference on Ad-
vanced ICT (Information and Communication Technology) for Education, September 20-22,
(ICAICTE 2013), Hainan, China, Atlantis Press, pp. 495-499.

6. Pozdnyakov S., Posov I, Akimushkin V., Maytarattanakon A. (2013), “The bridge from sci-
ence to school”, X World Conference on Computers in Education July 2-5, Toruń, Poland,
vol.3, pp.131-132

7. Pozdniakov S. , Posov I., Pukhov A., Tsvetkova I. (2012), “Science Popularization by Orga-
nizing Training Activities Within the Electronic Game Laboratories”, International Journal of
Digital Literacy and Digital Competence (IJDLDC), Volume 3: 2 Issues, pp 17-31.

8. Cartelli A., Dagiene V., Futschek G. (2010), “Bebras Contest and Digital Competence Assess-
ment: Analysis of Frameworks”, IJDLDC 1(1), pp. 24-39.

9. Yagunova E., Ryzhova N.. “The use of on-line competition protocols to evaluate the task com-
plexity and improve the validity of measuring procedure” [“Ispolzovanie protokolov on-lajn
konkursov dlya ocenki slozhnosti zadach i povysheniya validnosti izmeritelnoj procedury”],
Computer Tools in Education Journal, N 6, 2013, pp. 33-44.

10. Shapiro S. I. (1973). “From algorithms to judgement”, [Shapiro s.i. Ot algoritmov — k suzh-
deniyam], M., Sovetskoe radio, 288 p.

11. Bogdanov M. , Pozdnyakov S. , Puhov A. (2009). “Multiplicity of the knowledge repre-
sentation forms as a base of using a computer for the studying of the discrete mathematics”,
PEDAGOGIKA 96, 136-142, ISSN 1392-0340.

12. Pozdniakov S. (2012). “Domain specific language approach to technology-enhanced learn-
ing”, The 12th International Congress on Mathematical Education, July 8-15, COEX, Seoul,
Korea, ICME-12 proceedings p. 3676-3685.

13. Alyoshina N. A. and other (1990). “Logic and computer. Simulation of reasonings and vali-
dation of programs” [“Logika i kompyuter. Modelirovanie rassuzhdenij i proverka pravilnosti
programm”], M., “Nauka”.

14. Velihov E.P. (1988), “Simple and dificult ideas in programming” [“Prostoe i slozhnoe v pro-
grammirovanii”], M., “Nauka”, ISBN: 5-02-006595-1.

99

Curriculum Integration Ideas for Improving the
Computational Thinking Skills of Learners through

Programming via Scratch

Filiz Kalelioğlu1, Yasemin Gülbahar2, Sümeyra Akçay3, Dilek Doğan4

1 Başkent University, Department of Computer Education and Instructional Technologies,
Ankara, Turkey

filizk@baskent.edu.tr
2 Ankara University, Department of Informatics, Ankara, Turkey

gulbahar@ankara.edu.tr
3 Başkent University Private Ayşeabla School, Ankara, Turkey

sumeyrabildi@gmail.com
4 Ankara University, Department of Informatics, Ankara, Turkey

surbahanli@ankara.edu.tr

Abstract. How and what would you teach if you had only one course to help
students explore the essence of computation and perhaps inspire a few of them
to think computationally? Generally, students learn all the information and
communication tools provided to them, but they are never expected to write any
computer programs. A new ICT curriculum, which started being implemented
last year in Turkey, gives students a chance to learn not just using computers,
but to think like computers. This paper provides implementation suggestions for
the integration of Scratch into the existing ICT curriculum, based on prior
research on the phenomenon. Hence Scratch, as a computational thinking tool,
will be discussed in terms of its possible contribution to students’
computational thinking skills.

Keywords: Scratch, computational thinking skills, ICT curriculum

1 Definition, Components and Reasoning of “Computational
Thinking”

Today’s learners are expected to possess 21st century skills, which contain
problem solving and critical thinking skills. These skills are important for effective
reasoning, and for analysing and adapting existing knowledge into new contexts,
setting up connections between information and arguments, making proper
judgments, interpreting information and for drawing conclusions based on the best
analysis. They also have to reflect critically on what is learnt for the purpose of
decision making and solving problems effectively. Moreover, these abilities are not
just for computer scientists [25], they are needed in all disciplines as mentioned by
[8]: “The ability to see a problem and then to solve it is important, not just in science

101

and the military; lawyers need a similar ability when putting together and arguing a
case. Authors need it when conceiving a subject and then putting it into words.”

However, even graduates are having difficulties with solutions to real life problems
or applying their theoretical knowledge and putting it into practice, which is reflecting
or connecting related information into proper situations. As stated by [24], all these
skills are related to the human mind, since cognitive capacity to solve any problem is
limited by the knowledge stored in the mind. On the other hand, knowledge is derived
from thinking processes based on a variation from simple to complex. Hence, the
application of critical thinking processes via existing knowledge, and computers for
solving complex technological problems, can be called “Computational Thinking
(CT)”. In other words as stated by [25] “Computational thinking involves solving
problems, designing systems, and understanding human behaviour, by drawing on the
concepts fundamental to computer science”. Similarly, [1] considered computational
thinking as “...the thought processes involved in formulating problems so their
solutions can be represented as computational steps and algorithms”.

In their article, [6] defined computational thinking as an approach to solve
problems through computers and also as a problem solving methodology that can be
automated and transferred and applied across subjects. The researchers also
underlined that through computational thinking “Students become not merely tool
users but tool builders. They use a set of concepts, such as abstraction, recursion, and
iteration, to process and analyse data, and to create real and virtual artefacts”. Parallel
with this idea, [11] defined some elements which form the basis of curricula that aim
to support its learning. The researchers mentioned abstractions and pattern
generalisations, systematic processing of information, symbol systems and
representations, algorithmic notions of flow of control, iterative, recursive, and
parallel thinking, and some other elements as important assets for the development of
ICT skills.

To summarise, we know that the human mind is the most powerful problem-
solving tool and the ability to extend the power of human thought with computers and
other digital tools has become an essential part of the 21st century skills set. This is
why we should continue researching how, when, and where computers and other
digital tools can support us in solving problems [6]. Hence, this study discusses the
implementation of a visual programming tool within the related curriculum in order to
equip learners with computational thinking skills at grades 5-6.

2 “Information and Communication Technologies and
Software” Course in Turkey

In 2012, the computer literacy course curriculum, as well as the course name,
changed in Turkey. A standards-based curriculum approach was preferred and a
framework was established, based on the international standards of ICT proposed by
ISTE and NAACE. It is composed of four dimensions: (1) Digital literacy, (2)
Communication, Knowledge Sharing and Self-Expression via ICT, (3) Research,

102

Knowledge Construction and Collaboration, and (4) Problem Solving, Programming
and Development of Authentic Materials. The official name of the course is specified
as “Information and Communication Technologies and Software” [19, 20, 23]. Three
learning levels were defined for students: basic, intermediate and advanced, with each
level composed of two stages. In the “Problem Solving, Programming and
Development of Authentic Materials” standard, learners are expected to possess skills
about Problem-Solving Approaches, Algorithm and Strategy Development,
Programming and finally Software Project Development, Implementation and
Dissemination. With this framework, teachers are free to choose the tool and software
to teach computing and programming skills to children [12]. As a first attempt,
Scratch program has been translated into Turkish and inserted into the main portal of
the National Ministry of Education, or “Education and ICT Network
(http://www.eba.gov.tr/ara?q=scratch)”. Moreover, sample tutorials are also presented
in the network for different examples of the use of Scratch.

Since our implementation was at the introductory level, we planned a 5 week
course and our objective was teaching “Problem-Solving Approaches” together with
some programming skills. Hence, our learning outcomes were designed as shown in
Table 1.

Table 1. Intended Learning Outcomes to Teach Program Solving Approaches at 5th Grade

Standard 4. Problem Solving, Programming and Development of Authentic Materials
Levels

Standards

Basic I:
Comprehens

ion of ICT

Basic II:
Access to

information
and

evaluation

Inter-
mediate I:
Managing

information

Inter-
mediate II:
Information
conversion

Advanced I:
Information
generation

Advanced
II: Share

information

Problem-
Solving
Approaches

1.1. Defines
the concepts
of algorithm,
strategy and
problem-
solving.
1.2. Awaren
ess of the
problems
encountered
in the use of
ICT.
1.3. Refers
to the
importance
of problem
solving.

2.1. Comme
nts on
solvability of
a problem in
the process
of problem
solving.
2.2. Determi
nes the
required
variables and
processes to
solve
problems.
2.3. Realise
s the
relationship
of the
concepts of
algorithms
and
strategies.

3.1. Lists
different
problem-
solving
approaches.
3.2. Debugg
ing to make
necessary
corrections to
run the
program
correctly.

4.1. Suggest
s a different
solution for
solving the
problem
4.2. Creates
flowchart for
displaying
the solution
of a problem
4.3. Creates
animated
scenes
according to
prepared by
flow.

5.1. Creates
the specified
steps to
solving the
problem.
5.2. Reache
s the most
effective
solution to
questioning
the validity
of developed
steps for
problem
solving.

6.1. Offers
creating
solutions for
the identified
problems and
approach
6.2. Shares
program code
and
executable
file in social
media.

103

3 A Computational Thinking Tool for Children: Scratch

According to [18], in programming, learners need to acquire three information
types: Syntactic, Conceptual and Strategic/Conditional Knowledge. Syntactic
Knowledge includes knowing the syntax of a programming language, and the ability
to explain syntactic differences. Conceptual Knowledge includes using syntax rules to
write programs. Strategic/Conditional Knowledge includes the using of syntactic and
conceptual knowledge effectively to design code and test programs to solve problems.
In the traditional teaching of programming, generally students don’t know how
common programming structures work, nor do they have any concept about errors
[4].

Visual programming software, like Scratch, Alice etc., can facilitate the teaching of
programming to children without the need for memorisation, since the curriculum
aims to teach problem solving and computational thinking skills to learners. Scratch is
a free, open-source software, offering support for 61 different languages. Although
Scratch is a programming language for 8-16 year old children, younger children can
also work with the help of their parents or older siblings [9]. Children can program
their stories, games and animations, and they can also share their artefacts and
programs with people from all over the world [14]. It has been designed and
developed by the Lifelong Kindergarten group at the MIT Media Lab since 2003 [21].
According to 2014 data from Scratch, there are 2,692,964 registered users and
4,727,653 projects shared [22].

Scratch helps people learn to think creatively, reason systematically, and work
collaboratively with 21st century skills. It ensures users make their projects personally
engaging, motivating and meaningful because of its easy use to import or create any
kind of media, such as images, sounds, and music [17]. Scratch provides opportunities
for students [15], some of these are interactivity and the incentive for multi-sensory,
active, experimental learning environment; focus on design of visual statement
instead of memorising specific syntactic learning of programming languages;
conditions to create rich useful coding tools, condition of tools to organise a variety of
linked, dynamic representations, numerical, textual, and audio-visual; supporting of
problem solving; providing immediate feedback on student programming actions for
self-correction; motivation and representation of different activities such as black-box
activities, and collaborative learning activities.

As suggested by [16], Building-block programming, Programmable manipulation
of rich media, Deep shareability, Integration with the physical world and Support for
multiple languages are the core features to be considered in the design of learning
environments.

With the building-block programming feature, users can drag and drop graphical
block structures so they can put together the parts of the program easily without
memorising scripting. Thus, syntax errors, which are the biggest problem for
beginners, are eliminated in the teaching of a programming language. Different stacks
of blocks execute in parallel, such as procedures or functions. There are various block

104

categories available on Scratch, such as motion, looks, sound, pen, data, events,
control, sensing, operators and other blocks (Fig. 1 shows an example).

Fig. 1. A Sample Screen from the Pen Block

According to [7], there are different Scratch block types such as trigger, reporter,
loop, conditional, and predicate, command and operator blocks. Trigger blocks allow
runscripts when the green flag is clicked, a specified key is pressed, a message
broadcast from another sprite, backdrop switches to a certain background, or selected
attributes such as loudness, timer etc. Loop Blocks repeat blocks and run statements
inside of them. Conditional blocks allow executing if/else statements or comparing
commands. Predicate blocks return true or false. Operator blocks perform
mathematical and text operations.

Through programmable manipulation of media rich features, Scratch allows users
to manipulate images, animations, movies and sound with a visual interface and
therefore without the initial boring activities of numbers, strings or simple graphics
associated with traditional programming. The feature of deep shareability supports the
sharing of components, techniques, ideas and other projects on many types of devices
such as desktop computers, laptops, tablets, and mobile phones. Through integration
with the physical world feature, it is possible to control the behaviour of Scratch
creations via switches, sliders, distance sensors, motion detectors and sound sensors.
With the support for multiple languages, Scratch ensures a multilingual environment
to support the collaboration and sharing of users from different countries.

In addition to these properties, programming concepts and skills are supported in
Scratch so that students can learn important computational skills and concepts in a
virtual environment via 2D or 3D characters and objects which have been designed by
users. Students do not need to know programming syntax in the process of writing
computer programs. The success of teaching and learning programming can be
achieved by real life problems [10]. Scratch provides an easy interface for users to

105

create their own environments and their own code without the need for memorising.
Moreover, in their study, [2] emphasised that algorithms, introduction to informatics,
information technology and applications, computer graphics and editing them,
information technology and security, different programming languages, creating
database and animation and creating games should be taught from the 5th grade of
primary school, with individuals to be brought into a manufacturer of information
technology. The purpose and targeted age groups of Scratch makes it suitable for
programming courses for the 5th grade of primary schools.

Based on these facts, scratch could be seen as an effective computational thinking
tool, since a computational thinking tool must meet some conditions within in a
curriculum. According to the computational thinking tool checklist proposed by [28],
CT tool has low threshold, high ceiling, scaffolds flow, enables transfer, supports
equity and systemic and sustainable. To illustrate this point more elaborately several
points can be considered: (a) a student can easily program a working and playable
game with this tool, (b) the curriculum has to support development of these skills with
these tools, (c) curriculum has to support transferring between them, (d) the tool has
to support equity across gender and ethnicity boundaries, and lastly (e) a CT tool and
curriculum can be used by all students and teachers.

4 Ideas for Curriculum Integration

A five week instructional programme to teach problem solving skills to 5th grade
primary school students via Scratch was designed by [13]. In this instructional
programme, the students were taught topics such as an introduction to Scratch
programming, installation of a Scratch platform, introduction to User Interfaces and
the writing of programs such as Hello World, Parrot, Aquarium programs and Maze
project. In total, students have five hours to write these programs at school.

In the first week, students are introduced to the basic terminology and concepts of
problem solving and programming. They practice with the Scratch program and learn
about the interface and logic of the software. Hence, it is aimed that the learning
outcomes of Basic I Comprehension of ICT level are achieved (1.1, 1.2 and 1.3 in
Table 1).

In the second week, with the Hello World program (Fig. 2), students added a
background picture to their scenes. Then they assigned a meow sound command to
the cat character, they moved the cat and finally they made the cat give messages such
as “Welcome”, and “Today we will learn how to scratch”. In the Parrot program (Fig.
3), students learned how to start the program, iterate the block and change the cat
character. They made the parrot character fly by changing the costumes of the
character. Therefore, it is intended that the learning outcomes of Basic II: Access to
information and evaluation level are achieved (2.1, 2.2, 2.3 in Table 1).

106

Fig. 2. Flow of the Hello World Program Fig. 3. Flow of the Parrot Program

In the third week, with the Aquarium program (Fig. 4), students learned how to
manage and control more than one character, and practiced how to iterate the blocks.
They learned to how to turn the character around if the character was on the edge,
how to point towards the mouse cursor, how to change the colour effect, and how to
play sounds. Consequently, with this lesson, it is planned that the learning outcomes
of Intermediate I: Managing information level are accomplished (3.1 and 3.2 in Table
1).

Fig. 4. Aquarium Program

For the 4th and 5th weeks, students spend these two weeks on the Maze project
(Fig. 5) by adding variables for calculating time spent in the game, life of the
character and by adding sounds to the scene. Moreover, students learned how to use if
conditions, how to use and activate arrow keys from the keyboard and how to change
the X and Y positions of the characters. Consequently, in this lesson, different
learning outcomes at different levels are accomplished (2.2, 3.1, 3.2, 4.1, 4.2 and 4.3
in Table 1).

107

Fig. 5. The Maze Project

5 Perceptions about the Implementation: Interview with ICT
Teacher

After the implementation of the instructional programme, a structured interview
was conducted with the ICT teacher. She thought that Scratch was pretty good as an
interface for graphical programming language for students. She added that the basis of
the algorithm could be given while teaching programming in Scratch. Especially for
beginners, teaching the fundamental concepts of programming is so important to
gaining this high level skill [10, 26]. Conceptual information of programming and
problem-solving skills are also required as well as programming syntax for students
[26]. On the question about what kind of applications students should practice in
Scratch, she suggested dialogues to begin with, then move on to design the scene,
determine the character / characters, make characters talk and move and lastly, to
create a game using conditions and variables. She explained that there were learning
issues while teaching the conditions topic. As [10] stated, the teaching of
programming is directly related to the student’s problem solving skills. Due to the
difficulty of gaining programming skills for beginners, student successes in
programming courses is generally quite low.

In answer to the question, which competencies that students gain; she stated that
students learn the rules and follow a logical sequence within the framework of blocks,
learn to correct mistakes and reach quicker solutions while writing a program, and
thereby learn to solve problems.

On students’ reflections about Scratch, she said that students take great pleasure
from using the Scratch program. On the whole, most male students love the idea of

108

writing a gaming program, whereas the girls usually face more difficulties. On
suggestions about teaching programming more successfully, she said that students and
teachers should take programming very seriously and should organise events and
publicity. Children should be encouraged. A Turkish national resource should be
created and IT teachers should share how they teach programming to their classes. A
repository about programming could be created under the EBA site.

6 Discussion & Conclusion

At the basic level of the ICT curriculum, concepts, different problem-solving
approaches, identifying variables and processes, using the compiler, commenting on
problem solving are important. In teaching programming languages, generally the
sequencing rules of any programming language is transferred to the students, from
simple to complex, starting with the algorithmic way of thinking. However, teaching
programming is a quite difficult and complicated process.

Generally students try to solve problems without a real understanding of it and they
don’t think to establish the correct analogies between their old knowledge and the
new problems, so their solutions are usually unrelated and incorrect [4]. Most of time
students can find programming to be a difficult and complex cognitive task [3]. Most
of the time teachers and students focus on the syntactic details of a programming
language [4] and the teaching of syntax may take up considerable time for teachers
and students. In a traditional approach, the teaching of programming is not
personalised and teachers cannot provide appropriate teaching strategies for each
student [4]. Students can create their own scenarios; see the syntax error and program
with different solutions at their own learning speed with Scratch. Teachers can use it
in different ways on different subjects in the curriculum to involve them.

When the intended learning outcomes of teaching problem solving approaches for
the 5th grade were reflected into the lesson with sample program ideas for curriculum
integration, it is revealed that the basic and intermediate levels were achieved, while
the learning outcomes at advanced levels were not. Due to time limitations and
distribution of the other subjects in the curricula, such a result is not surprising. In
fact, for an entry level of such a course, those applications could be seen as sufficient;
it could be decided that the learning outcomes at higher levels can be achieved in the
upper classes as this curricula suggests.

The more important point here is that whether or not students gain computational
thinking skills with these intended learning outcomes. Writing programs is not
enough to develop computational thinking skills, but it is important to support
computational competencies [11]. Hence, they stated the characteristics believed to
form the basis of computational thinking skills. Moreover, it is believed that these
characteristics are used to assess the development of computational thinking skills
within the teaching and learning processes. These characteristics are abstractions and
pattern generalisations (including models and simulations), systematic processing of
information, symbol systems and representations, algorithmic notions of flow of

109

control, structured problem decomposition (modularising), iterative, recursive, and
parallel thinking, conditional logic, efficiency and performance constraints and
debugging and systematic error detection. Similar characteristics that form the basis
of computational thinking skills are analysing and logically organising data, data
modelling, data abstractions, and simulations, formulating problems such that
computers may assist, identifying, testing, and implementing possible solutions,
automating solutions via algorithmic thinking and generalising and applying this
process to other problems (http://en.wikipedia.org/wiki/Computational_thinking).

When the created applications of the students were considered, it can be said that
students tried to achieve some cognitive tasks for developing computational thinking.
Because, students processed information systematically, they used symbolic systems
and representations, algorithmic notions of flow of control, practiced iterative,
recursive, and parallel thinking. And lastly, it can be said that they tried to use
conditional logic, debugging with their programs, to identify, test, and implement
possible solutions and to generalise solutions to other problems. In brief, it is thought
that practicing in Scratch has possibilities to contribute to students’ computational
thinking skills. On the other hand, from a more scientific perspective, to present
evidence about possible contribution to students’ computational skills, developed
skills should be measured with a valid and reliable instrument. Alternatively, in a
study of [27], researchers proposed an assessment framework in order to present the
development of computational skills of the Scratchers. These approaches are project
portfolio analysis, artifact-based interviews and design scenarios. For the first
approach, project portfolio analysis, a user analysis tool such as a Scrape tool was
used to analyse the portfolio of the students’ projects uploaded to the online
community. This analysis provided a visual presentation of the used and unused
blocks in every project. With the artifact-based interviews, researchers can interview
with the students about their project and project creation process. For the last
approach – design scenarios, students were engaged in several independent activities
such as students were tried to explain what the selected project does and, how it could
be extended, fix a bug and remix it by adding a something new. Each approach has
strengths and limitations in itself. Therefore, no single assessment approach is
sufficient enough to prove the computational skills of the students and a mix of
assessment approaches should be used to show evidence of these skills.

References

1. Aho, A. V.: Computation and Computational Thinking. The Computer Journal. 55(7), 832-
835 (2012)

2. Akpınar, Y., Altun, A.: Bilgi Toplumu Okullarında Programlama Eğitimi Gereksinimi.
Elementary Education Online. 13 (1), 1-4 (2014)

3. Aktunc, Ö.: A teaching Methodology for Introductory Programming Courses using Alice.
International Journal of Modern Engineering Research (IJMER). 3(1), 350-353 (2013)

4. Anabela, G., Mendes, A.J.: Learning to Program – Difficulties and Solutions. Proceedings
of International Conference on Engineering Education (ICEE). September 3-7, Coimbra,
Portugal (2007)

110

5. Barr, D., Harrison, J., Conery, L.: Computational Thinking: A Digital Age Skill for
everyone. Learning & Leading with Technology. 38(6), 20-23 (2011)

6. Barr, V., Stephenson, C.: Bringing Computational Thinking to K-12: What is Involved and
What is the Role of the Computer Science Education Community?. ACM Inroads. 2(1),
48-54 (2011)

7. Beug, A.: Teaching Introductory Programming Concepts: A Comparison of Scratch and
Arduino. (Master’s Thesis). The Faculty of California Polytechnic State University, San
Luis Obispo (2012)

8. Day, C.: Computational Thinking Is Becoming One of the Three Rs. Journal of Computing
in Science and Engineering. 13(1), 88 (2011)

9. Ebrahimi, A., Geranzeli, S., Shokouhi, T.: Programming for Children; “Alice and Scratch
Analysis”. Conference on emerging Trends of Computer Information and Technology
(ICETCIT). Singapore, November 6-7 (2013)

10. Genç, Z., Karakuş, S.: Tasarımla Öğrenme: Eğitsel Bilgisayar Oyunları Tasarımında
Scratch Kullanımı. International Computer and Instructional Technologies Symposium
ICITS 2011, Fırat University, Elazığ, Turkey (2011)

11. Grover, S., Pea, R.: Computational Thinking in K-12: A Review of the State of the Field.
Educational Researcher, 42(1), 38–43 (2013)

12. Gülbahar, Y., Ilkhan, M., Kilis, S., Arslan, O.: Informatics Education in Turkey: National
ICT Curriculum and Teacher Training at Elementary Level. Informatics in Schools: Local
Proceedings of the 6th International Conference ISSEP 2013 – Selected Papers, 77-87
(2013)

13. Kalelioğlu, F., Gülbahar, Y.: The Effect of Teaching Programming via Scratch on Problem
Solving Skills: A Discussion from Learners’ Perspective. Informatics in Education, 13(1),
33-50 (2014)

14. Karabak, D., Güneş, A.: Ortaokul Birinci Sınıf Öğrencileri için Yazılım Geliştirme
Alanında Müfredat Önerisi. Journal of Research in Education and Teaching. 2(3), 175-
181(2013)

15. Kordaki M.: Diverse Categories of Programming Learning Activities Could Be Performed
within Scratch. Procedia -Social and Behavioral Sciences. 46, 1162-66 (2012)

16. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., Resnick, M.: Scratch: A Sneak
Preview. Second International Conference on Creating, Connecting, and Collaborating
through Computing. Kyoto, Japan, 104-109 (2004)

17. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The Scratch
Programming Language and Environment. ACM Transactions on Computing Education
(TOCE). 10 (4) (2010)

18. McGill, T. J., Volet, S. E.: A Conceptual Framework for Analyzing Students’ Knowledge
of Programming. Journal of Research on Computing in Education. 29(3), 276-197 (1997)

19. NAACE: Draft Naace Curriculum Framework Information and Communication
Technology (ICT) Key Stage 3 (2012)

20. NAACE: ICT Framework: A Structured Approach to ICT in Curriculum and Assessment
(Revised Framework) (2007)

21. Scratch: Scratch Statistics-Imagine, Program, Share. http://scratch.mit.edu/ (last
checked 2/4/2014)

22. Scratch Statistics: Scratch Statistics-Imagine, Program, Share.
http://scratch.mit.edu/statistics/ (last checked 2/4/2014)

23. The International Society for Technology in Education (ISTE): National Educational
Technology Standards for Students. http://www.iste.org/standards/nets-
for-students (last checked 1/31/2013)

111

24. Voskoglou, M. G., Buckley, S.: Problem Solving and Computers in a Learning
Environment. Egyptian Computer Science Journal (ECS) . 36(4), 28-46 (2012)

25. Wing, J. M.: Computational Thinking. Communications of the ACM, 49(3), 33-35 (2006)
26. Yurdugül, H., Gültekin, K.: Çokluortamın Bilgisayar Programlama Başarısı Üzerine

Etkisi. Proceedings of 9th International Educational Technology Conference (IETC 2009).
Hacettepe University, Ankara, Turkey, May 6-7-8, 449-457 (2009)

27. Brennan, K., & Resnick, M. Using artifact-based interviews to study the development of
computational thinking in interactive media design. Paper presented at annual American
Educational Research Association meeting , Vancouver, BC, Canada, April 13-17, 1-25
(2012)

28. Repenning, A., Webb, D., & Ioannidou, A. Scalable Game Design and the Development of
a Checklist for Getting Computational Thinking into Public Schools.
http://www.cs.colorado.edu/~ralex/papers/PDF/SIGCSE10-repenning.pdf (last checked
4/8/2014)

112

Poster Presentations

Effects Of Programming Course On Middle School
Students’ Reflective Thinking Skills Towards Problem

Solving

Kadir Burak Olgun1, Gonca Kızılkaya Cumaoğlu1, Sevinç Gülseçen 2

1Yeditepe University, İstanbul, Turkey
{kadir.olgun, gonca.kizilkaya}@yeditepe.edu.tr

2Istanbul University, İstanbul, Turkey
gulsecen@istanbul.edu.tr

Algorithm is a method to solve problem by following significant instructions entirely
[2]. This method is one of the important steps of programming. According to [3],
there are three steps of correct programming. First one is problem analysis, second
one is to generate an algorithm and the last one is to implement this algorithm. [5]
suggest that the main point of the programming is to develop problem solving
strategies. In respect of the study of [1], 7 years old students, who are programmers,
have more reflective thinking skills than non-programmers. In the light of these
researches, the aim of this study is to analyze the effect of programming course on
middle school students’ reflective thinking skill towards problem solving.

In this research, Scratch, improved by Lifelong Kindergarten Group in
Massachusetts Institute of Technology [7] and a graphical programming language that
simplify programming [4], was used for teaching programming on experimental
group (N=50) for 4 weeks. Control group (N=50) have only have the regular
computer course. After the treatment, reflective thinking skill scale, developed by [6],
was applied on 100 sixth grade students. The results of the study and the implications
of the future researchs will be discussed.

References

1. Clements, D. H., Gullo, D. F.: Effects of computer programming on young children's
cognition, Journal of Educational Psychology, 76(6), 10-51 (1984)

2. Futschek, G.: Algorithmic Thinking: The Key for Understanding Computer Science, In
Lecture Notes in Computer Science, 4226, 159-168 (2006)

3. Garner, S.: Learning resources and tools to aid novices learn programming, Informing
Science & Information Technology Education Joint Conference (INSITE), 213-222 (2003)

4. Genç, Z., Karakuş, S.: Tasarımla Öğrenme : Eğitsel Bilgisayar Oyunları Tasarımında
Scratch Kullanımı, 5th International Computer & Instructional Technologies Symposium,
22-24 September 2011 Elazığ (2011)

5. Kazimoglu, C., Kiernan, M., Bacon, L., Mackinnon, L.: A serious game for developing
computational thinking and learning introductory computer programming. Procedia-Social
and Behavioral Sciences, 47, 1991-1999 (2012)

6. Kızılkaya, G., Aşkar, P.: The Development of A Reflective Thinking Skill Scale Towards
Problem Solving, Education and Science, 34(154), 82-92 (2009)

115

7. Resnick, M., Maloney, J., Hernandez, M. A., Rusk, N., Eastmond, E., Brennan, K., Millner,
A., Rosenbaum, E., Sılver, J., Silverman, B., Kafai, Y.: Scratch: Programming For All,
Communications Of The Acm, 52(11), 60-67 (2009)

116

The Effect of Collaborative Game Design on Critical
Thinking, Problem Solving and Algorithm Development

Skills

Mehmet Fatih ERKOÇ1, Sevinç GÜLSEÇEN2

1Yildiz Technical University, İstanbul, Turkey
 mferkoc@yildiz.edu.tr

2Istanbul University, İstanbul, Turkey
gulsecen@istanbul.edu.tr

1 Introduction

Since the mid-1990s, computer games have captured the attention of training profes-
sionals, educators, and researchers. As a result of this situation, a considerable amount
of study has been published on the value of educational use of the games and its po-
tential effects on learning. [1] claims that games can produce engagement and enjoy-
ment which offer a powerful format for educational environments in learning. New
generation of students should be considered not only as consumers of technology but
also as producer of 21st Century technologies. This proposal, have focused on exam-
ine the effect of game design with Microsoft KODU, which is an innovative tool for
game making, on critical thinking, problem solving, and algorithm development skills
of 6th grade students.

2 Literature Review

[4]’s in their study, they claimed that students’ motivation, as measured by attention
gained, perceived relevance, confidence instilled, and satisfaction, was improved by
playing educational games. It can be mentioned that providing game for educational
use can encourage critical, pro-social problem solving to support the development of
the 21st century skills [6]. To be a successful employee and an effective member of
society in the 21st century, today’s students must have a range of skills such as crea-
tivity, critical thinking, problem solving etc. Many researchers have investigated the
potential effects of building children’s and young people’s own games on learning
new knowledge and skills [6]. [5] claimed that creating game is a complex task re-
quiring creative skills such as problem finding, problem solving, evaluation and
communication. However, according to [2], game building activities can be consid-
ered as an effective way for improving most relevant skills including collaboration,
communication, ICT literacy, creativity, critical thinking, problem solving and
productivity, required to be successful in the Knowledge Society. Additionally, [3]
mentioned that, as a possible future learning method, learning by making digital
games approach can prepare students for the challenges of the 21st Century. When

117

examining the literature, game building activities motivate and encourage the students
for learning and constructing the new knowledge and 21st Century skills. On the other
hand, it provides new opportunities to teachers for creating satisfactory classes.

3 Method

This is a quasi-experimental study with pretest and posttest design, will be carried out
during the fall semesters of the 2014-2015 academic years. Both quantitative and
qualitative analyses will be used to examine the collected data through Cornell Criti-
cal Thinking Skills Test, Problem Solving Test, Algorithm Developing Achievement
tests developed by researchers and the semi-structured interviews. All of the three
groups will take these tests before begin implementing. In addition to face-to-face
Microsoft KODU education, twenty five students who will be randomly assigned to
first treatment group will divide 5 groups, and each group will make their own game
collaboratively. Other twenty five students who will be assigned second treatment
group, they will make their game individually. Last group will be assigned as control
group. And the last group will be assigned as control group. At the end of the study all
of the groups will take the tests again. SPSS package program will use for analyzing
collected data.

References

1. Boyle, T.: Design for multimedia learning. Prentice Hall (1997)

2. Dagnino , F., Earp, J., Ott, M: Investigating the" MAGICAL" Effects of Game Building on

the Development of 21st Century Skills. 5th International Conference of Education,

Research and Innovations (pp. 19-21). Madrid,SPAIN: IATED (2012).

3. Earp, J., Dagnino, F., Kiili, K., Kiili, C., Tuomi, P., Whitton, N.: Learner Collaboration in

Digital Game Making: An Emerging Trend. Learning & Teaching with Media &

Technology (439-447). Genoa, ITALY: Association for Teacher Education in Europe

(2013).

4. Klein, J. D.: Freitag, E. Effects of using an instructional game on motivation and

performance. The Journal of Educational Research, 84(5), 303-308 (1991).

5. Robertson, J.: Making games in the classroom: Benefits and gender concerns. Computers &

Education, 59, 385–398 (2012).

6. Thomas, M. K., Ge, X., Greene, B. A. Fostering 21st century skill development by

engaging students in authentic game design projects in a high school computer

programming class. Journal of Educational Computing Research, 44(4), 391-408 (2011).

118

Contributions of Universities to Children’s Informatics
Education in Turkey

Şebnem Özdemir

Istanbul University, Department of Informatics, Istanbul, Turkey
sebnemozde@gmail.com

Education is a fundamental force for economic improvement, social wellbeing and
construction of society. At that point universities have important roles as educational
establishments and centers of social and technological changes with their educational
curriculums, labs, research centers and different type of certificate and support pro-
grams. Besides universities have special missions such as researching the society’s
regional and global issues, needs and being ready for describing and analyzing new
generation, who have different habits, learning style. That generation has an innate
predisposition to using new technologies. Although their predisposition, they need
guidance for increasing their potential and being young people with well-developed
algorithmic thinking [1] [2] [12]. Many universities organize science, art and etc.
events for children not only for guidance to a new generation, but also need of being
information society. The concept of “children university or children science center”
was established to create a stable and a continual platform for promoting interest in
science among the young generation [3].

The idea of children university based on developing and shaping the future mem-
ber of society by triggering their academic curiosity [4] [6] [7] [13]. The first children
university was founded in 2002 at the University of Tübingen in Germany [3]. In
Turkey, the first children's university was founded 2009 in Ankara [4]. Even though
there are 195 universities in Turkey [5] [8], only 16 of them have children university
or children science center.

The goal of this study is to analyze the contributions of universities in Turkey to
children’s informatics education via children university and children science center.
With that goal, their summer, winter and weekend programs were examined and ana-
lyzed in order to find out the courses that are related to informatics education.

There were over 150 different courses in those children universities and children’s
science centers, but only 20 of them were related to informatics education, such as
“planet of informatics, dynamic math, programming with Small Basic, programming
with Kodu and etc.” There was no common educational purpose and time planning in
those courses. For example, programming with Small Basic in Istanbul University’s
children’s university takes three weeks, but “game programming” in Ankara Universi-
ty’s children’s university takes only 5 days, even though they have the same educa-
tional purpose and common expectations. On the other hand, according to Sadonichy
(2011) informatics mostly contains mathematical fundamentals of informatics and
information technologies [9]. But the contents of the courses were mostly focusing

119

information technology and mostly ignoring mathematical fundamentals of informat-
ics.

Because of Turkey’s Information Society’s policy, information course was added
to curriculum of primary school as “computer course” in 1998 and changed as infor-
mation technologies course in 2007 [10][11]. In spite of that policy and changes in the
curriculum, universities, as the important educational establishments, have very inad-
equate number of children universities or children science centers. When the number
of universities is considered, it can be expressed that their contribution to children’s
informatics education is not sufficient. There should be generally common design and
planning for informatics education in all children universities and children science
centers. The interoperability issues should be handled such as training duration and
learning outcomes.

References

1. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman B., Kafai, Y.: Scratch: Programming for
All. Communucation of the ACM, 52, 11 (2009)

2. Gülseçen, S., Özdemir, S., Gezer, M., Akadal, E., Özen, Z.: The Good Reader of Digital
World, Digital Natives: Are They Good Writer of that World? 6th World Conference on
Educational Sciences, Malta (2014) (in pubslishing process)

3. Maslen, G.: EUROPE: New Network of Children's Universities (2008).
http://www.universityworldnews.com/article.php?story=200807311552
22429 (last checked 20.05 2014)

4. Ankara Üniversitesi Çocuk Bilim Merkezi: Amaçlar. (2009)
http://cocukuniversitesi.ankara.edu.tr/?page_id=547. [retrieved 10.05.2014]

5. YÖK: Üniversitelerimiz (2014):
http://www.yok.gov.tr/web/guest/universitelerimiz (last checked
07.04.2014)

6. Aydın Çocuk Üniversitesi: Hakkımızda. (2013)
http://cocukuniversitesi.aydin.edu.tr/index.asp?id=2 (last checked
04.05.2014)

7. İstanbul Üniversitesi Çocuk Üniversitesi: Kuruluş ve Amaçlar. (2010) [Online] Available:
http://cocukuniversitesi.istanbul.edu.tr/?p=6068 (last checked
11.05.2014).

8. Günay, D., Günay, A.: 1933'den Günümüze Türk Yükseköğretiminde Niceliksel
Gelişmeler. Journal of Higher Education and Science, vol 1 pp. 001-022 (2011)

9. Sadonichy, V. A.: Informatics and Teaching It at School. Programming and Computer
Software, 6, 273-278 (2011)

10. MEB Talim ve Terbiye Kurulu Başkanlığı: Ortaokul ve İmam hatip ortaokulu Bilişim
Teknolojileri ve Yazılım Dersi (5,6,7 ve 8. Sınıflar) Öğretim Programı. MEB, Ankara
(2012)

11. MEB Talim ve Terbiye Kurulu Başkanlığı: İlköğretim Seçmeli Bilgisayar (1-8. Sınıflar)
Dersi Öğretim Programı: Ankara: MEB (2006)

12. Gein, A. G.: Informatics in Schools: Problems of Content. Programming and Computer
Software,37, 284-287 (2011)

13. Children's Universty of Manchester: About the Children's University. (2012)
http://www.childrensuniversity.manchester.ac.uk/about/ (last checked
03.05.2014).

120

Analysis of the Quality of Teaching Computer Science
and ICT

Gaisina Svetlana Valer’evna

State budget institution of additional professional education (training) specialists St. Petersburg
Academy of Postgraduate Pedagogical Education, Russia, St. Petersburg

s_v@bk.ru

The results of studies of quality of teaching computer science at the primary school in
St. Petersburg, assesses the qualifications of teachers of computer science.

Teacher - the main subject of management of cognitive activity of students, so the
quality of teaching is primarily associated with his professionalism. Everything is
important here - skill level, attitude in the activities and understanding of the occur-
ring changes, a positive attitude to seek a new and of course the availability of neces-
sary professionally significant personality traits teacher.

The study was conducted in St. Petersburg in 2011-2012 academic years. Peda-
gogical community of teacher’s informatics amounted to 1,881 persons at the begin-
ning of the study. In the study, were surveyed 554 teachers who teach computer sci-
ence and ICT in the schools of St. Petersburg, it is - 30% of the total number of teach-
ers in this category. Consequently, this sample can be considered representative.

The survey showed that all teachers have a university degree, (99%, 546 teachers)
or incomplete higher education. Higher pedagogical education have 49% of respond-
ents, higher technical -268 teachers (48 %) are enrolled in graduate school - 16 teach-
ers (3 %). The average teaching experience of work as a teacher of computer science
is 10.8 years.

During the last 5 years, 505 teachers (91%) have undergone training at professional
development. Improve their skills and teachers informatics through participation in
conferences, scientific workshops and festivals at various levels (43%, 237 teachers).
Content analysis of the results showed that in pedagogical environment there is de-
mand for allowances, lesson plans using innovative educational technologies, innova-
tive teaching aids. The results of analysis of the quality of teaching computer science
and ICT based on these data are presented in Table 1.

121

Table 1. Quality of teaching computer science and ICT (sample - 465 teachers)

Key characteristics Data of the survey Index
Professional competence of teachers
in the field of system knowledge
(specialization in informatics and
ICT)

Basic education (number of teachers)
higher professional (science teacher)
-123 ;
Higher Technical - 268;
secondary technical 8

98%

Professional competence of teachers
in the system of pedagogical
knowledge

Basic higher pedagogical education
(number of teachers)
science teacher -137;
teacher of other disciplines – 131

49%

Professional experience of teachers Number of teachers who have experi-
ence as a teacher of computer science
for over 5 years – 410

74,13%

Increasing scientific and innovative
potential teachers

retraining - 3;
training in the system of advanced
training of teachers – 505

91%

Values and motivation of teachers to
ensure a high quality of teaching
(orientation in activities at socially
significant problems, the desire to
provide personal development of each
pupil; aspirations for self-realization,
improvement of own activities)

participation in conferences, scien-
tific workshops and festivals at vari-
ous levels – 237
organization Involvement of Pupils in
scientific conferences, competitions
and festivals at various levels – 282

94%

Content analysis of the results showed that in pedagogical environment there is
demand for allowances, lesson plans using innovative educational technologies, inno-
vative teaching aids.

During lessons are not used materials of only of one educational and methodical
complex, 56% of teachers use in the teaching of Informatics additional textbooks. In
addition to the selected educational complex teachers use approved and recommended
by the Ministry of Education textbooks and teaching aids of other authors, and also
textbooks on logic and Programming. According to teachers, these materials are not
enough, and teachers Informatics create their own electronic educational resources for
all stages of learning activities.

Training refresher courses, participation in a conferences and seminars, proves that
the teachers is interested in increasing their professional competence. Informatics
teachers have a positive attitude to the introduction and dissemination of scientific
achievements, innovative development and effective’s experience. Teachers are aware
of the role of proper education in modern dynamically changing of life of society.

References

1. Bordovskih, GA., Nesterov, AA., Trapitsyn, SY: Quality control educational process.
St.Petersburg.: Publ RSPU. AIGertsena. 359 (2000)

122

Data Management: More Than a Matter of CS

Andreas Grillenberger and Ralf Romeike

Friedrich–Alexander–Universität Erlangen–Nürnberg (FAU)
Department of Computer Science, Computing Education Research Group

{andreas.grillenberger,ralf.romeike}@fau.de

1 Big Data and Data Management

Data management is one of the most exciting and challenging topics in computer
science. Nowadays, handling large amounts of varying data in short processing times,
which is Big Data, is intensively discussed not only in CS; it has also a tremendous
influence on daily life and society, as handling data and dealing with the new chances
and threats increases in relevance for everyone. However, data management is only a
marginal topic in current education. Hence, we will outline the importance of this
topic for school by presenting three aspects mainly affected by the current develop-
ments in this field: the paradigm change in data management, the influences of this
field on everyday life and using it as a tool.

2 A new Paradigm in Data Management

Data management concerns with storing, managing and analyzing data, often using
database management systems (DBMS). As today the requirements on such systems
are clearly changing, new types of DBMS, summarized as NoSQL databases (“not
only SQL” [1]), evolved. Hence, common concepts of DBMS are challenged, e. g. the
relevance of redundancy: In RDBMS, preventing redundancies is a main aim, while
NoSQL databases use redundancy intentionally for accelerating access to distributed
stored data. The decision whether to handle or to prevent redundancy has to be made
from case to case. Therefore, various publications state an ongoing paradigm change
in data management (cf. [4]): in the future a great variety of DBMS can be expected.

3 Data Management in Daily Life

Today, people not only use but also generate and manage large amounts of data every
day. These data need to be handled in a proper way, depending on their value. While
private data need to be protected from unauthorized access, for example by encryp-
tion, in other cases protecting the device on which the data is stored is sufficient. Oth-
er requirements are coming from the large amount of data-driven devices and applica-
tions everyone uses: For example, the task of synchronizing data between devices
includes several important aspects of data management like handling redundancy and
inconsistencies. Therefore, the user is often confronted with phenomena like duplicat-

123

ed contacts, accidentally reverted changes or other synchronization conflicts that have
to be resolved by hand. Summarizing, data management comprises various decisions
everybody needs to make: where to store data, how to protect them, how to deal with
threats for data privacy, and so on. As these tasks are strongly related to everyday life,
data management becomes increasingly relevant for everyone.

4 Using Data Management as a Tool

The amount of publicly available data (“Open Data”) increases continuously. By ana-
lyzing such data, various information can be derived that are relevant for understand-
ing decisions, political topics, and so on. These methods for analyzing data are not
only relevant in CS and in daily life, but also in other fields and sciences. Not only the
data, but also more and more easy-to-use tools for analyzing and visualizing them are
made available. In addition, there are indicators that people want to understand such
analyses, e. g. not only weather forecasts are provided as smartphone apps but also the
satellite images used for deriving these forecasts. Today, when moving to a foreign
city, one cannot only read others views on the possible neighborhood, but can in de-
tail analyze data, provided for example by the city administration: e. g. New York
City offers data on the calls to the service number 311 at their open data portal. When
aggregating these by borough and mapping them, it is easy to discover boroughs with
for example bad street conditions or high noise. As in the digital life more and more
decisions base on the results of data analysis, this is an important method and compe-
tency. This relevance is not only limited to CS: as data analysis becomes increasingly
important, even a new profession is rising—the “data scientist”.

5 Conclusions

Within the last years, data management clearly changed: not only does handling data
follow a new paradigm, also its influences on everyday life become visible. In addi-
tion, it is used as a tool in other fields. These three aspects entail numerous new re-
quirements for CS education (cf. [2]). By emphasizing data management at school, a
main aim of general education can be reached: fostering knowledge, skills and com-
petencies strongly related to everyone’s daily life (cf. [3]).

References

1. Edlich, S., Friedland, A., Hampe, J., Brauer, B., Brückner, M.: NoSQL [in German].
Hanser, Carl Gmbh + Co. (2011)

2. Grillenberger, A., Romeike, R.: Big Data - Challenges for Computer Science Education.
In: Proceedings of ISSEP 2014 (2014)

3. Grillenberger, A., Romeike, R.: Teaching Data Management: Key Competencies and Op-
portunities [in print]. In: Proceedings of KEYCIT 2014 (2014)

4. Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How
We Live, Work, and Think. Houghton Mifflin Harcourt (2013)

124

Boardcasting: Web-Development Mobile Teaching and
Learning

Ilia Gossoudarev

Russian Herzen State Pedagogical University, Russia
gossoudarev@herzen.spb.ru

1 The Mobile Learning Environment

The learning process in a university is focused on students’ personal development and
interaction, guided by the teachers – lecturers, professors etc. The up-to-date way to
provide a proper environment for all the participants of the process where they could
interact and develop is to create what we could call a mobile environment. This envi-
ronment has to store educational information, be accessible anywhere regardless of
time or geolocation, and allow sharing stuff with other students and teachers.

Nowadays teachers may choose from a great variety of tools to create such an envi-
ronment. Most of them have been using blogs and sites recently. But in this case the
interaction is not really full-duplex. A teacher provides information on their site or
blog and students comment on the posts, or vice versa. But true collaboration means
that both students and teachers equally donate to the final result of the research pro-
ject. This in effect implements the initial proposal by Tim Berners Lee – the Web
coedited by all.

And this is what is achieved with the aid of cloud tools. We use a cloud document
like Google Spreadsheet, a wiki page or site, a screencast or a video tutorial and some
specific subject-related tools, depending on what we teach. For instance, let’s consid-
er number systems – base 10, base 2 etc. We can construct a mobile environment out
of a reliable educational wikisite, like http://tibasicdev.wikidot.com/binandhex, a
screencast, a Google spreadsheet with some formulas and instructions.

A cloud assignment is a wikipage or a cloud document which is shareable with
learners. A teacher may create a document with public access but not editable, then
students copy it to their environments (Google Drive, dropbox etc) and create their
own versions based upon this primary document, to share it with the instructor even-
tially. Basing upon [2] study of dialogue in distance education and the works of [1]
we can implement the idea of a dialogue as a method of collaborative code develop-
ment involving the teacher and the students.

125

2 Boardcasting

A boardcast (https://en.wikipedia.org/wiki/Boardcast) is a cloud document which is
being edited online in real time mode. It may or may not allow for the audience to edit
or comment on it. I teach web programing on Javascript using an online cloud code
editor created by myself, kodaktor.info. It can host “boards” like
http://kodaktor.info/cc42acc with assignments and instructions (while
http://kodaktor.info/cc42acc_1 contains a solution to it). Boards can be re-edited by
an educator and created by everyone. You can find more information about it at
http://kodaktor.info or watch a screencast at http://youtu.be/Csu80pZHidY

In Russia students often tend to search for optional sources of education infor-
mation and that’s why academic mobility is so important for them. Mobile learning
environment based on cloud tools offers great opportunities for such type of learning.
It makes learning independent from a specific place / location, provides ways of shar-
ing and collaboration, is suitable for mobile / portable devices and also creates a plat-
form for continuous / lifelong learning because it follows and individual throughout
his progress in space and time.

References

1. Moore, M. G.: Theory of Transactional Distance. In D. Keegan (Ed.), Theoretical principles
of distance education, 1, 22-38. New York: Routledge (1993)

2. Shearer, R. L.: Transactional Distance and Dialogue: An Exploratory Study to Refine the
Theoretical Construct of Dialogue in Online Learning (Unpublished Dissertation). The
Pennsylvania State University, University Park (2009)

126

Which One Leads The Quality in Education: Technology
by Mechanicity or Methodology by Humanity

Cem Turan

İstanbul University, Department of Informatics, İstanbul, Turkey
turancem@windowslive.com

1 Summary

In general, technology means truthiness, high speed and big domains wherever it is
used. It seems fine and that is why to be loved and accepted easily by the crowds.
More speed, tones of information may be a reason for making more profit but is every
area of the life suitable for gaining speed and to be digitized as much as possible?
Theoretically, the public decided to use the technology thus it would make our lives
easier and free our time in order to spend for social relationships. Unfortunately, the
marks related with the results of using uncontrolled technology shows us which some
expectations about the using of technology are not True-Positive: We hoped but it
would not.

Especially, in last few decades, technology dramatically occupied education and
redesigned the methods of teaching. Technology has been still leading a part of edu-
cation strategies globally without spending time enough for thinking on density of
uncontrolled and socially unplanned technology to shape young brains.

Of course, I do not mean to say not to use technology at all, as a representative of
computer science which is one of the pioneers of technology concept but try to point
possible harmfulness of unprepared usages.

2 Perception of Informatics in the Human

Education is not only a series of efforts on transporting knowledge from one person to
others mechanically but also it uses some human-specific behaviors such as mimics,
feelings, level of voices etc. Teaching is not only an occupation which makes stu-
dents memorize whatever they should, statically. As a result of this reality, teachers
should be the main part of education processes and should not assign this role to the
products of technology [2].

We took a poll about the perception of using technology in classroom and pre-
ferred ways of learning among various age and social groups. Majority of answers
confirm our estimations about the right roles of technology in education [4]. Almost
all attenders of the survey do not share with the thought of “having a robot-teacher”
and believe that education is an “emotion based activity”. Pure technology usage in
education may cause losing some brain capabilities.

127

3 General Evaluation for Schools

Technology is a tool in teaching in order to offer more understandability and expand-
ed sense for students. As appliers, teachers should be ready for using this tools cor-
rectly and effectively but the researches shows us most of the teachers are not ready
and / or not interested in knowing true usage of them. In universities, colleges and
other schools have been becoming cemeteries of unused hi-tech toys. Some of soft
materials on hardware such as multimedia contents or software were designed as if
they were used in ordinary environment [1].

A new, innovational, technology-aided but human-aimed approach is needed for
non-robotized, aware of emotion (EQ), social responsibility, the aim of education
which is not only “what” but also “how”, especially “why”, identify himself / herself
as a part of the nature for healthy, happy and “live” next generations. They must not
memorize but really learn with great sensibility for using in the future for the civiliza-
tion.

4 Discussion: Eduinformatics

Education needs particular sections from specialized informatics forms such as psy-
choinformatics, neuroinformatics and socioinformatics because the target of education
is the brain which has more complexity than we expect and it is not a machine. It uses
different memory areas according to the kind of information, environmental condi-
tions, feelings etc. [3]

5 Results

Technology is for mankind and should be directed by the specialists in education-
aimed informaticians in so-called “eduinformatics”, not vendors or marketing stories
of IT sector. Because every product of education systems is a person who should be
prepared for the future as a perfect “human” not “machine or automaton”. Moderniza-
tion does not mean having technology but means using technology correctly. We have
proofs enough to point the risk.

References

1. Leidner D.E., Jarvenpaa Sirkka L.: The Use of Information Technology to Enhance Ma-
nagement School Education: A theorical View. MIS Quarterly. 19(3) (1995)

2. Harms C.M., Niederhauser D.S., Davis N.E., Roblyer M.D., Gilbert S.B.: Educating Educa-
tors for Virtual Schooling: Communicating Roles and Responsibilities. Electronic Journal
of Communication, 16(2). Communication Institute for Online Scholarship (2006)

3. Salomon G.: Distributed Cognitions: Psychological and Educational Considerations,
Cambridge University Press (1993)

128

4. Culbertson C., Daugherty M., Merrill C.: Effects of Modular Technology Education on
Junior High Students’ Achievement Scores, Journal of Technology Education, 16(1),
Council of Technology Teacher Education and the International Technology Education
Association (2004)

129

Workshops

Educational Standards for Digital Competence
at Lower Secondary Level

Peter Micheuz

Alpen-Adria University Klagenfurt, Institute for Informatics Didactics
Universitätsstraße 65-67, 9020 Klagenfurt, Austria

peter.micheuz@aau.at

Until now, very few countries have been successful in implementing Informatics or Computing at
primary and lower secondary level. The spectrum from digital literacy to informatics, particularly as a
discipline in its own right, has not really achieved a break-through and seems to be underrepresented
for these age-groups in many countries.

The goal of this workshop is not only to discuss the anamnesis and diagnosis of this fragmented
field, but to discuss and suggest viable forms of therapy in form of setting educational standards,
referring to the holistic European approach in form of the buzzword “Digital Competence”, derived
from the Digital Agenda.

However, an overview of worldwide endeavors gives hope that Informatics (or Computing) within
the broader approach of Digital Competence will play a more significant role in lower secondary
education in a foreseeable future. Widely accepted definitions related to Informatics (computing),
information and communication technologies, digital literacy and technology enhanced learning, and
the acceptance of existing frameworks, competence models, curricula and teaching aids should
support this process.

Recently, an increasing number of position papers, frameworks and country reports explicating the
wide field of Informatics at schools have been published. These activities should remedy the
unacceptable situation of big distortions of computing in education even within countries, regions and
schools. Incoherence from country to country, state to state and even from school to school, is not the
exception but the norm. Informatics education (standards) varies widely and its picture especially at
lower secondary education shows distortions and inconsistencies referring to

� different perceptions of the term Informatics which often serves for every activity with computers,
� formal Informatics education between obligation and freedom of choice within autonomous

decisions of schools and regions,
� an antagonistic view on approaches to develop students’ digital competence and basic Informatics

education, integrated across the disciplines or as a discipline in its own right,
� different structures of reference frameworks in many countries, and
� Different preconditions, cultural backgrounds and requirements worldwide.

Making visible good practices and implementation strategies in some countries and comparing
successful approaches are rewarding tasks for this workshop.

Discussing, defining and agreeing common educational standards on a transcontinental level for the
age-group of 14 to 15 years old pupils/students in a readable, assessable and acceptable form should
keep the participants of this workshop active beyond the limited time at the workshop.

A similar workshop took place at the IFIP conference KEYCIT in Potsdam at the beginning of July
2014. Its tentative results will be a good starting point for a further discussion on this issue.

After a compact and comparing overview of worldwide approaches provided in a comprehensive
way by the organizer of the workshop, additional contributions from the participants - who preferably
should be aware of the situations in their countries - are appreciated.

133

134

Robotic Programming for Teaching Programming
Languages

Orçun Madran

Hacettepe University, Department of Information and Document Management, Ankara, Turkey
orcunmadran@gmail.com

Computer programming is a problem solving and production process where different
skills are executed simultaneously. Gaining the skills necessary for computer pro-
gramming is possible in various schools and grades via either compulsory courses or
voluntarily courses. Among the possible factors affecting the success in those tran-
ings, students attitudes and perceptions toward the programming, adequacy in com-
puter (or information technologies) literacy and consistency of the selected program-
ming language and goals of the training. One or more of these factors may both affect
the success of students in programming and impede the application of those skills in
other field. For example, independent from the programming language selected, pro-
gramming can provide problem solving skills like logical thinking and algorithm con-
struction, and analytic thinking abilities.

In this workshop, in order to provide programming skills, to make learning pro-
gramming language easy, to raise motivation and increase the success of students, we
will focus on robotic programming techniques.

Workshop language is Turkish. 20 people maximum can attend this workshop. At-
tendees may use their notebooks and group 4-5 people together to do some basic ex-
amples and sample applications.

Total workshop time is approximately 2 hours (1 hour theoretical, 1 hour practice).

135

Informatics Education at the Crossroads: Round Table
on the Dutch Case

Nataša Grgurina1, Erik Barendsen2

1University of Groningen
PO Box 800, 9700 AV Groningen The Netherlands

n.grgurina@rug.nl
2Radboud University Nijmegen and Open Universiteit

PO Box 9010, 6500 GL Nijmegen The Netherlands
e.barendsen@cs.ru.nl

There is a strong consensus among IT and computing professionals from industry,
research and development, and education, that computing education of the general
public is essential for society. In many countries, however, computing education is
inadequate and out of date. This alarming situation has been described in various
reports [2, 5]).

In the Netherlands, the present situation is precarious as well [7]. Informatics has
been introduced as an elective subject in the 10th and higher grades of pre-vocational
and senior general secondary education in 1998 [4] and has not received much atten-
tion since. A recent report by The Royal Netherlands Academy of Arts and Sciences
[1] summarizes the problems with current informatics education and suggests a rede-
sign of the informatics curriculum and introduction of a new compulsory digital liter-
acy subjects in lower grades of secondary education.

This report has led to two initiatives. First, a research by the Netherlands Institute
for Curriculum Development among the practicing Informatics teachers about their
enacted curriculum and their ideas about a desirable Informatics curriculum and its
implementation. This research resulted in a report for the ministry of education con-
taining a number of recommendations for the future development of the Informatics
education in higher grades of secondary education [6]. The second initiative is the
workshop Computing in Secondary Education at the Lorentz Center in September
2014. During this week long workshop, leading national and international experts
discuss the curriculum and (re)design issues concerning Informatics education in
general and in the Netherlands in particular.

In the ISSEP workshop we will report on the outcomes of the two initiatives, ask
the participant for feedback and discuss the national and international implications.

References

1. Digitale geletterdheid in het voortgezet onderwijsAmsterdam: Koninklijke
Nederlandse Akademie van Wetenschappen (2012)

2. Furber, S. (Ed.). Shut down or restart? The way forward for computing in UK schools.
London: The Royal Society (2012)

137

3. Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, J., McGettrick, A., et al.: In-
formatics education: Europe cannot afford to miss the boat Informatics Europe & ACM
Europe (2013)

4. Grgurina, N., & Tolboom, J.: The first decade of informatics in dutch high schools.
Informatics in Education, 7(1), 55-74 (2008)

5. Kaczmarczyk, L., & Dopplick, R.: Rebooting then Pathway to Success; Pre-
paring Students for Computing Workforce Needs in the United States. New
York: Association for Computing Machinery, Education Policy Committee
(2014).

6. Tolboom, J., Krüger, J., Grgurina, N.: Informatica in de bovenbouw havo/vwo, Naa-
raantrekkelijk en actueel onderwijs in informatica, SLO, Enschede (2014)

7. van Diepen, N., Perrenet, J., & Zwaneveld, B.: Which way with informatics
in high schools in the Netherlands? the dutch dilemma. Informatics in Educa-
tion, 10(1), 123-148 (2011)

138

Discovering Python

Michael Weigend

Institut für Didaktik der Mathematik und der Informatik,
Fliednerstr. 21, 48149 Münster, Germany

michael.weigend@uni-muenster.de

Python is a powerful object-oriented programming language that is free and open,
runs on every platform and is easy to learn. Python programs are short and compre-
hensible. Many schools and universities teach Python in introductory and advanced
programming courses.

This workshop consists of presentations, discussions and hands-on programming
activities. It starts with an introduction into Python’s main language features:

� Meaningful layout of source code
� Duck typing
� Comprehensible expressions (like 0<x<10)
� Type hierarchy
� Functions with different types of parameters
� Object oriented programming: classes and instances
� Polymorphism
� Modules
� Preventing and finding errors: assertions and tests

The first hands-on activity focuses on exploring basic Python concepts and model-
ing with lists, sets and dictionaries.

The second presentation discusses example projects that might be interesting for
computer science education at schools. Since Python programs are small, it is easier
to implement software that is meaningful and related to relevant contexts: editors,
image processors, web services, simulations. Python is one of the programming lan-
guages, which run on the Raspberry Pi (RPi). The RPi is a very small and inexpensive
computer, which is used a lot in science related projects at schools and universities. It
is rather easy to connect sensors (like digital thermometers) to the RPi’s general in-
put/output device (GPIO) and process the data in a Python grogram.

In the second programming activity, the participants develop a text editor with a
graphical user interface and special features, starting with a given prototype and
adopting agile methodology (Extreme Programming). The idea is to create a few sto-
ries (in these case features, estimate the development time and implement some of the
stories in iterations. The advantage of this approach is that at the end of each iteration
there is a program that actual works. Thus, in the classroom students can work and
learn with different speeds and still have finished their projects, when time is up.

139

ISSEP 2014 Author Index

Author Index

Akçay, Sümeyra 91

Barendsen, Erik 62, 120
Borowiecki, Maciej 1

Cumaoğlu, Gonca Kizilkaya 103

Dagienė, Valentina 62
Doğan, Dilek 91

Erkoç, Mehmet Fatih 105

Gaisina, Svetlana 81
Gosudarev, Ilya 113
Grgurina, Natasa 120
Grillenberger, Andreas 111
Grossmann, Wilfried 74
Gulsecen, Sevinc 103, 105
Gunčaga, Ján 29
Gülbahar, Yasemin 91

Kalelioğlu, Filiz 91
Karasová, Mária 29

Laroussi, Mona 38

Madran, Orçun 119
Micheuz, Peter 19, 118
Miled, Mahdi 38

Olgun, Kadir Burak 103
Oledzka, Katarzyna 1
Ozdemir, Şebnem 107

Pozdniakov, Sergei 81
Przybylla, Mareen 7

Reffay, Christophe 38
Romeike, Ralf 7, 111

Saeli, Mara 62
Schiller, Thomas 19
Schulte, Carsten 62
Standl, Bernhard 74

1

ISSEP 2014 Author Index

Turan, Cem 115

Valerevna, Gaisina Svetlana 109

Weigend, Michael 50, 122

	enformatik iç kapak
	Blank Page
	Blank Page

	enformatik kitap
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

